1.Network pharmacology analysis and experimental validation of Anemarrhenae Rhizoma in treating Alzheimer's disease
Deyu LI ; Yingchao HU ; Xin LIU ; Guran YU
Journal of Zhejiang University. Medical sciences 2024;53(1):84-97
		                        		
		                        			
		                        			Objective:To explore the mechanism of Anemarrhenae Rhizoma in treatment of Alzheimer's Disease(AD).Methods:The active ingredients and targets of Anemarrhenae Rhizoma for treatment of AD were screened with network pharmacology methods,the protein-protein interaction(PPI)network was constructed and the core targets were analyzed.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways enriching analysis was performed.The peripheral blood lymphocytes were extracted and lymphoblastoid cell lines(LCL)were constructed and an in vitro cell model of LCL-SKNMC was established.MTT and CCK-8 methods were used to quantify SKNMC/LCL cells,2′,7′-dichlorodihydrofluorescein diacetate(DCFH-DA)probe was used to detect reactive oxygen species(ROS),and immunofluorescence staining was used to detect the generation of Aβ1-42 in a co-cultured model.Western blotting was used to detect protein expression in the co-culture model.The lifespan of N2 nematodes was observed under oxidative stress,normal state,and heat stress;ROS generated by N2 nematodes was detected by DCFH-DA probes.The paralysis time of CL4176 N2 nematodes was evaluated by paralysis assay,and Aβ deposition in the pharynx was detected by Thioflavin S staining.Results:Through network pharmacology,15 potential active ingredients and 103 drug-disease targets were identified.PPI analysis showed that the Anemarrhenae Rhizoma might play anti-AD roles through albumin,Akt1,tumor necrosis factor,epidermal growth factor receptor(EGFR),vascular endothelial growth factor A(VEGFA),mammalian target of rapamycin(mTOR),amyloid precursor protein(APP)and other related targets.KEGG analysis showed that the pharmacological effects of Anemarrhenae Rhizoma might involve the biological processes of Alzheimer's disease,endocrine resistance,insulin resistance;and neuroactive ligand-receptor interaction,phosphatidylinositol 3-kinase(PI3K)-Akt signaling pathway,calcium signaling pathway,AGE-RAGE signaling pathway in diabetes complications,neurotrophic factor signaling pathway and others.The in vitro cell experiments showed that Anemarrhenae Rhizoma was able to reduce the production of ROS and Aβ1-42(both P<0.01),inhibit the expression of β-secretase 1(BACE1),APP and Aβ1-42 proteins(all P<0.05),up-regulate the expression of p-PI3K/PI3K,p-AKT/AKT,p-GSK3β/GSK3β in SKNMC cells(all P<0.05).The in vivo studies further confirmed that Anemarrhenae Rhizoma prolonged the lifespan of C.elegans under stress and normal conditions,reduced the accumulation of ROS and the toxicity of Aβ deposition.Conclusion:Anemarrhenae Rhizoma may reduce the production of Aβ in AD and inhibit its induced oxidative stress,which may be achieved by regulating the PI3K/Akt/GSK-3β pathway.
		                        		
		                        		
		                        		
		                        	
2.Network pharmacology analysis and experimental validation of Anemarrhenae Rhizoma in treating Alzheimer's disease
Deyu LI ; Yingchao HU ; Xin LIU ; Guran YU
Journal of Zhejiang University. Medical sciences 2024;53(1):84-97
		                        		
		                        			
		                        			Objective:To explore the mechanism of Anemarrhenae Rhizoma in treatment of Alzheimer's Disease(AD).Methods:The active ingredients and targets of Anemarrhenae Rhizoma for treatment of AD were screened with network pharmacology methods,the protein-protein interaction(PPI)network was constructed and the core targets were analyzed.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways enriching analysis was performed.The peripheral blood lymphocytes were extracted and lymphoblastoid cell lines(LCL)were constructed and an in vitro cell model of LCL-SKNMC was established.MTT and CCK-8 methods were used to quantify SKNMC/LCL cells,2′,7′-dichlorodihydrofluorescein diacetate(DCFH-DA)probe was used to detect reactive oxygen species(ROS),and immunofluorescence staining was used to detect the generation of Aβ1-42 in a co-cultured model.Western blotting was used to detect protein expression in the co-culture model.The lifespan of N2 nematodes was observed under oxidative stress,normal state,and heat stress;ROS generated by N2 nematodes was detected by DCFH-DA probes.The paralysis time of CL4176 N2 nematodes was evaluated by paralysis assay,and Aβ deposition in the pharynx was detected by Thioflavin S staining.Results:Through network pharmacology,15 potential active ingredients and 103 drug-disease targets were identified.PPI analysis showed that the Anemarrhenae Rhizoma might play anti-AD roles through albumin,Akt1,tumor necrosis factor,epidermal growth factor receptor(EGFR),vascular endothelial growth factor A(VEGFA),mammalian target of rapamycin(mTOR),amyloid precursor protein(APP)and other related targets.KEGG analysis showed that the pharmacological effects of Anemarrhenae Rhizoma might involve the biological processes of Alzheimer's disease,endocrine resistance,insulin resistance;and neuroactive ligand-receptor interaction,phosphatidylinositol 3-kinase(PI3K)-Akt signaling pathway,calcium signaling pathway,AGE-RAGE signaling pathway in diabetes complications,neurotrophic factor signaling pathway and others.The in vitro cell experiments showed that Anemarrhenae Rhizoma was able to reduce the production of ROS and Aβ1-42(both P<0.01),inhibit the expression of β-secretase 1(BACE1),APP and Aβ1-42 proteins(all P<0.05),up-regulate the expression of p-PI3K/PI3K,p-AKT/AKT,p-GSK3β/GSK3β in SKNMC cells(all P<0.05).The in vivo studies further confirmed that Anemarrhenae Rhizoma prolonged the lifespan of C.elegans under stress and normal conditions,reduced the accumulation of ROS and the toxicity of Aβ deposition.Conclusion:Anemarrhenae Rhizoma may reduce the production of Aβ in AD and inhibit its induced oxidative stress,which may be achieved by regulating the PI3K/Akt/GSK-3β pathway.
		                        		
		                        		
		                        		
		                        	
3.Network pharmacology analysis and experimental validation of Anemarrhenae Rhizoma in treating Alzheimer's disease
Deyu LI ; Yingchao HU ; Xin LIU ; Guran YU
Journal of Zhejiang University. Medical sciences 2024;53(1):84-97
		                        		
		                        			
		                        			Objective:To explore the mechanism of Anemarrhenae Rhizoma in treatment of Alzheimer's Disease(AD).Methods:The active ingredients and targets of Anemarrhenae Rhizoma for treatment of AD were screened with network pharmacology methods,the protein-protein interaction(PPI)network was constructed and the core targets were analyzed.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways enriching analysis was performed.The peripheral blood lymphocytes were extracted and lymphoblastoid cell lines(LCL)were constructed and an in vitro cell model of LCL-SKNMC was established.MTT and CCK-8 methods were used to quantify SKNMC/LCL cells,2′,7′-dichlorodihydrofluorescein diacetate(DCFH-DA)probe was used to detect reactive oxygen species(ROS),and immunofluorescence staining was used to detect the generation of Aβ1-42 in a co-cultured model.Western blotting was used to detect protein expression in the co-culture model.The lifespan of N2 nematodes was observed under oxidative stress,normal state,and heat stress;ROS generated by N2 nematodes was detected by DCFH-DA probes.The paralysis time of CL4176 N2 nematodes was evaluated by paralysis assay,and Aβ deposition in the pharynx was detected by Thioflavin S staining.Results:Through network pharmacology,15 potential active ingredients and 103 drug-disease targets were identified.PPI analysis showed that the Anemarrhenae Rhizoma might play anti-AD roles through albumin,Akt1,tumor necrosis factor,epidermal growth factor receptor(EGFR),vascular endothelial growth factor A(VEGFA),mammalian target of rapamycin(mTOR),amyloid precursor protein(APP)and other related targets.KEGG analysis showed that the pharmacological effects of Anemarrhenae Rhizoma might involve the biological processes of Alzheimer's disease,endocrine resistance,insulin resistance;and neuroactive ligand-receptor interaction,phosphatidylinositol 3-kinase(PI3K)-Akt signaling pathway,calcium signaling pathway,AGE-RAGE signaling pathway in diabetes complications,neurotrophic factor signaling pathway and others.The in vitro cell experiments showed that Anemarrhenae Rhizoma was able to reduce the production of ROS and Aβ1-42(both P<0.01),inhibit the expression of β-secretase 1(BACE1),APP and Aβ1-42 proteins(all P<0.05),up-regulate the expression of p-PI3K/PI3K,p-AKT/AKT,p-GSK3β/GSK3β in SKNMC cells(all P<0.05).The in vivo studies further confirmed that Anemarrhenae Rhizoma prolonged the lifespan of C.elegans under stress and normal conditions,reduced the accumulation of ROS and the toxicity of Aβ deposition.Conclusion:Anemarrhenae Rhizoma may reduce the production of Aβ in AD and inhibit its induced oxidative stress,which may be achieved by regulating the PI3K/Akt/GSK-3β pathway.
		                        		
		                        		
		                        		
		                        	
4.Network pharmacology analysis and experimental validation of Anemarrhenae Rhizoma in treating Alzheimer's disease
Deyu LI ; Yingchao HU ; Xin LIU ; Guran YU
Journal of Zhejiang University. Medical sciences 2024;53(1):84-97
		                        		
		                        			
		                        			Objective:To explore the mechanism of Anemarrhenae Rhizoma in treatment of Alzheimer's Disease(AD).Methods:The active ingredients and targets of Anemarrhenae Rhizoma for treatment of AD were screened with network pharmacology methods,the protein-protein interaction(PPI)network was constructed and the core targets were analyzed.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways enriching analysis was performed.The peripheral blood lymphocytes were extracted and lymphoblastoid cell lines(LCL)were constructed and an in vitro cell model of LCL-SKNMC was established.MTT and CCK-8 methods were used to quantify SKNMC/LCL cells,2′,7′-dichlorodihydrofluorescein diacetate(DCFH-DA)probe was used to detect reactive oxygen species(ROS),and immunofluorescence staining was used to detect the generation of Aβ1-42 in a co-cultured model.Western blotting was used to detect protein expression in the co-culture model.The lifespan of N2 nematodes was observed under oxidative stress,normal state,and heat stress;ROS generated by N2 nematodes was detected by DCFH-DA probes.The paralysis time of CL4176 N2 nematodes was evaluated by paralysis assay,and Aβ deposition in the pharynx was detected by Thioflavin S staining.Results:Through network pharmacology,15 potential active ingredients and 103 drug-disease targets were identified.PPI analysis showed that the Anemarrhenae Rhizoma might play anti-AD roles through albumin,Akt1,tumor necrosis factor,epidermal growth factor receptor(EGFR),vascular endothelial growth factor A(VEGFA),mammalian target of rapamycin(mTOR),amyloid precursor protein(APP)and other related targets.KEGG analysis showed that the pharmacological effects of Anemarrhenae Rhizoma might involve the biological processes of Alzheimer's disease,endocrine resistance,insulin resistance;and neuroactive ligand-receptor interaction,phosphatidylinositol 3-kinase(PI3K)-Akt signaling pathway,calcium signaling pathway,AGE-RAGE signaling pathway in diabetes complications,neurotrophic factor signaling pathway and others.The in vitro cell experiments showed that Anemarrhenae Rhizoma was able to reduce the production of ROS and Aβ1-42(both P<0.01),inhibit the expression of β-secretase 1(BACE1),APP and Aβ1-42 proteins(all P<0.05),up-regulate the expression of p-PI3K/PI3K,p-AKT/AKT,p-GSK3β/GSK3β in SKNMC cells(all P<0.05).The in vivo studies further confirmed that Anemarrhenae Rhizoma prolonged the lifespan of C.elegans under stress and normal conditions,reduced the accumulation of ROS and the toxicity of Aβ deposition.Conclusion:Anemarrhenae Rhizoma may reduce the production of Aβ in AD and inhibit its induced oxidative stress,which may be achieved by regulating the PI3K/Akt/GSK-3β pathway.
		                        		
		                        		
		                        		
		                        	
5.Network pharmacology analysis and experimental validation of Anemarrhenae Rhizoma in treating Alzheimer's disease
Deyu LI ; Yingchao HU ; Xin LIU ; Guran YU
Journal of Zhejiang University. Medical sciences 2024;53(1):84-97
		                        		
		                        			
		                        			Objective:To explore the mechanism of Anemarrhenae Rhizoma in treatment of Alzheimer's Disease(AD).Methods:The active ingredients and targets of Anemarrhenae Rhizoma for treatment of AD were screened with network pharmacology methods,the protein-protein interaction(PPI)network was constructed and the core targets were analyzed.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways enriching analysis was performed.The peripheral blood lymphocytes were extracted and lymphoblastoid cell lines(LCL)were constructed and an in vitro cell model of LCL-SKNMC was established.MTT and CCK-8 methods were used to quantify SKNMC/LCL cells,2′,7′-dichlorodihydrofluorescein diacetate(DCFH-DA)probe was used to detect reactive oxygen species(ROS),and immunofluorescence staining was used to detect the generation of Aβ1-42 in a co-cultured model.Western blotting was used to detect protein expression in the co-culture model.The lifespan of N2 nematodes was observed under oxidative stress,normal state,and heat stress;ROS generated by N2 nematodes was detected by DCFH-DA probes.The paralysis time of CL4176 N2 nematodes was evaluated by paralysis assay,and Aβ deposition in the pharynx was detected by Thioflavin S staining.Results:Through network pharmacology,15 potential active ingredients and 103 drug-disease targets were identified.PPI analysis showed that the Anemarrhenae Rhizoma might play anti-AD roles through albumin,Akt1,tumor necrosis factor,epidermal growth factor receptor(EGFR),vascular endothelial growth factor A(VEGFA),mammalian target of rapamycin(mTOR),amyloid precursor protein(APP)and other related targets.KEGG analysis showed that the pharmacological effects of Anemarrhenae Rhizoma might involve the biological processes of Alzheimer's disease,endocrine resistance,insulin resistance;and neuroactive ligand-receptor interaction,phosphatidylinositol 3-kinase(PI3K)-Akt signaling pathway,calcium signaling pathway,AGE-RAGE signaling pathway in diabetes complications,neurotrophic factor signaling pathway and others.The in vitro cell experiments showed that Anemarrhenae Rhizoma was able to reduce the production of ROS and Aβ1-42(both P<0.01),inhibit the expression of β-secretase 1(BACE1),APP and Aβ1-42 proteins(all P<0.05),up-regulate the expression of p-PI3K/PI3K,p-AKT/AKT,p-GSK3β/GSK3β in SKNMC cells(all P<0.05).The in vivo studies further confirmed that Anemarrhenae Rhizoma prolonged the lifespan of C.elegans under stress and normal conditions,reduced the accumulation of ROS and the toxicity of Aβ deposition.Conclusion:Anemarrhenae Rhizoma may reduce the production of Aβ in AD and inhibit its induced oxidative stress,which may be achieved by regulating the PI3K/Akt/GSK-3β pathway.
		                        		
		                        		
		                        		
		                        	
6.Network pharmacology analysis and experimental validation of Anemarrhenae Rhizoma in treating Alzheimer's disease
Deyu LI ; Yingchao HU ; Xin LIU ; Guran YU
Journal of Zhejiang University. Medical sciences 2024;53(1):84-97
		                        		
		                        			
		                        			Objective:To explore the mechanism of Anemarrhenae Rhizoma in treatment of Alzheimer's Disease(AD).Methods:The active ingredients and targets of Anemarrhenae Rhizoma for treatment of AD were screened with network pharmacology methods,the protein-protein interaction(PPI)network was constructed and the core targets were analyzed.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways enriching analysis was performed.The peripheral blood lymphocytes were extracted and lymphoblastoid cell lines(LCL)were constructed and an in vitro cell model of LCL-SKNMC was established.MTT and CCK-8 methods were used to quantify SKNMC/LCL cells,2′,7′-dichlorodihydrofluorescein diacetate(DCFH-DA)probe was used to detect reactive oxygen species(ROS),and immunofluorescence staining was used to detect the generation of Aβ1-42 in a co-cultured model.Western blotting was used to detect protein expression in the co-culture model.The lifespan of N2 nematodes was observed under oxidative stress,normal state,and heat stress;ROS generated by N2 nematodes was detected by DCFH-DA probes.The paralysis time of CL4176 N2 nematodes was evaluated by paralysis assay,and Aβ deposition in the pharynx was detected by Thioflavin S staining.Results:Through network pharmacology,15 potential active ingredients and 103 drug-disease targets were identified.PPI analysis showed that the Anemarrhenae Rhizoma might play anti-AD roles through albumin,Akt1,tumor necrosis factor,epidermal growth factor receptor(EGFR),vascular endothelial growth factor A(VEGFA),mammalian target of rapamycin(mTOR),amyloid precursor protein(APP)and other related targets.KEGG analysis showed that the pharmacological effects of Anemarrhenae Rhizoma might involve the biological processes of Alzheimer's disease,endocrine resistance,insulin resistance;and neuroactive ligand-receptor interaction,phosphatidylinositol 3-kinase(PI3K)-Akt signaling pathway,calcium signaling pathway,AGE-RAGE signaling pathway in diabetes complications,neurotrophic factor signaling pathway and others.The in vitro cell experiments showed that Anemarrhenae Rhizoma was able to reduce the production of ROS and Aβ1-42(both P<0.01),inhibit the expression of β-secretase 1(BACE1),APP and Aβ1-42 proteins(all P<0.05),up-regulate the expression of p-PI3K/PI3K,p-AKT/AKT,p-GSK3β/GSK3β in SKNMC cells(all P<0.05).The in vivo studies further confirmed that Anemarrhenae Rhizoma prolonged the lifespan of C.elegans under stress and normal conditions,reduced the accumulation of ROS and the toxicity of Aβ deposition.Conclusion:Anemarrhenae Rhizoma may reduce the production of Aβ in AD and inhibit its induced oxidative stress,which may be achieved by regulating the PI3K/Akt/GSK-3β pathway.
		                        		
		                        		
		                        		
		                        	
7.Network pharmacology analysis and experimental validation of Anemarrhenae Rhizoma in treating Alzheimer's disease
Deyu LI ; Yingchao HU ; Xin LIU ; Guran YU
Journal of Zhejiang University. Medical sciences 2024;53(1):84-97
		                        		
		                        			
		                        			Objective:To explore the mechanism of Anemarrhenae Rhizoma in treatment of Alzheimer's Disease(AD).Methods:The active ingredients and targets of Anemarrhenae Rhizoma for treatment of AD were screened with network pharmacology methods,the protein-protein interaction(PPI)network was constructed and the core targets were analyzed.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways enriching analysis was performed.The peripheral blood lymphocytes were extracted and lymphoblastoid cell lines(LCL)were constructed and an in vitro cell model of LCL-SKNMC was established.MTT and CCK-8 methods were used to quantify SKNMC/LCL cells,2′,7′-dichlorodihydrofluorescein diacetate(DCFH-DA)probe was used to detect reactive oxygen species(ROS),and immunofluorescence staining was used to detect the generation of Aβ1-42 in a co-cultured model.Western blotting was used to detect protein expression in the co-culture model.The lifespan of N2 nematodes was observed under oxidative stress,normal state,and heat stress;ROS generated by N2 nematodes was detected by DCFH-DA probes.The paralysis time of CL4176 N2 nematodes was evaluated by paralysis assay,and Aβ deposition in the pharynx was detected by Thioflavin S staining.Results:Through network pharmacology,15 potential active ingredients and 103 drug-disease targets were identified.PPI analysis showed that the Anemarrhenae Rhizoma might play anti-AD roles through albumin,Akt1,tumor necrosis factor,epidermal growth factor receptor(EGFR),vascular endothelial growth factor A(VEGFA),mammalian target of rapamycin(mTOR),amyloid precursor protein(APP)and other related targets.KEGG analysis showed that the pharmacological effects of Anemarrhenae Rhizoma might involve the biological processes of Alzheimer's disease,endocrine resistance,insulin resistance;and neuroactive ligand-receptor interaction,phosphatidylinositol 3-kinase(PI3K)-Akt signaling pathway,calcium signaling pathway,AGE-RAGE signaling pathway in diabetes complications,neurotrophic factor signaling pathway and others.The in vitro cell experiments showed that Anemarrhenae Rhizoma was able to reduce the production of ROS and Aβ1-42(both P<0.01),inhibit the expression of β-secretase 1(BACE1),APP and Aβ1-42 proteins(all P<0.05),up-regulate the expression of p-PI3K/PI3K,p-AKT/AKT,p-GSK3β/GSK3β in SKNMC cells(all P<0.05).The in vivo studies further confirmed that Anemarrhenae Rhizoma prolonged the lifespan of C.elegans under stress and normal conditions,reduced the accumulation of ROS and the toxicity of Aβ deposition.Conclusion:Anemarrhenae Rhizoma may reduce the production of Aβ in AD and inhibit its induced oxidative stress,which may be achieved by regulating the PI3K/Akt/GSK-3β pathway.
		                        		
		                        		
		                        		
		                        	
8.Research progress on epidemiology of inguinal hernia
Yingmo SHEN ; Xiaoli LIU ; Ruotong ZHENG ; Deyu TONG ; Qiuyue MA
Chinese Journal of Digestive Surgery 2024;23(9):1168-1172
		                        		
		                        			
		                        			Inguinal hernia is one of the most common surgical diseases, mainly in men and elderly people, and its occurrence and development are related to many risk factors. At present, inguinal hernia can only be cured with surgery, which requires the selection of surgical methods based on patients′ conditions, medical resources and surgeons′ skills. With the aging of the popula-tion, it is expected that the number of inguinal hernia patients will continue to increase. The authors review the epidemiology, risk factors and characteristics of surgical treatment mode of inguinal hernia based on the epidemiological studies of inguinal hernia in recent years.
		                        		
		                        		
		                        		
		                        	
9.Network pharmacology analysis and experimental validation of Anemarrhenae Rhizoma in treating Alzheimer's disease
Deyu LI ; Yingchao HU ; Xin LIU ; Guran YU
Journal of Zhejiang University. Medical sciences 2024;53(1):84-97
		                        		
		                        			
		                        			Objective:To explore the mechanism of Anemarrhenae Rhizoma in treatment of Alzheimer's Disease(AD).Methods:The active ingredients and targets of Anemarrhenae Rhizoma for treatment of AD were screened with network pharmacology methods,the protein-protein interaction(PPI)network was constructed and the core targets were analyzed.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways enriching analysis was performed.The peripheral blood lymphocytes were extracted and lymphoblastoid cell lines(LCL)were constructed and an in vitro cell model of LCL-SKNMC was established.MTT and CCK-8 methods were used to quantify SKNMC/LCL cells,2′,7′-dichlorodihydrofluorescein diacetate(DCFH-DA)probe was used to detect reactive oxygen species(ROS),and immunofluorescence staining was used to detect the generation of Aβ1-42 in a co-cultured model.Western blotting was used to detect protein expression in the co-culture model.The lifespan of N2 nematodes was observed under oxidative stress,normal state,and heat stress;ROS generated by N2 nematodes was detected by DCFH-DA probes.The paralysis time of CL4176 N2 nematodes was evaluated by paralysis assay,and Aβ deposition in the pharynx was detected by Thioflavin S staining.Results:Through network pharmacology,15 potential active ingredients and 103 drug-disease targets were identified.PPI analysis showed that the Anemarrhenae Rhizoma might play anti-AD roles through albumin,Akt1,tumor necrosis factor,epidermal growth factor receptor(EGFR),vascular endothelial growth factor A(VEGFA),mammalian target of rapamycin(mTOR),amyloid precursor protein(APP)and other related targets.KEGG analysis showed that the pharmacological effects of Anemarrhenae Rhizoma might involve the biological processes of Alzheimer's disease,endocrine resistance,insulin resistance;and neuroactive ligand-receptor interaction,phosphatidylinositol 3-kinase(PI3K)-Akt signaling pathway,calcium signaling pathway,AGE-RAGE signaling pathway in diabetes complications,neurotrophic factor signaling pathway and others.The in vitro cell experiments showed that Anemarrhenae Rhizoma was able to reduce the production of ROS and Aβ1-42(both P<0.01),inhibit the expression of β-secretase 1(BACE1),APP and Aβ1-42 proteins(all P<0.05),up-regulate the expression of p-PI3K/PI3K,p-AKT/AKT,p-GSK3β/GSK3β in SKNMC cells(all P<0.05).The in vivo studies further confirmed that Anemarrhenae Rhizoma prolonged the lifespan of C.elegans under stress and normal conditions,reduced the accumulation of ROS and the toxicity of Aβ deposition.Conclusion:Anemarrhenae Rhizoma may reduce the production of Aβ in AD and inhibit its induced oxidative stress,which may be achieved by regulating the PI3K/Akt/GSK-3β pathway.
		                        		
		                        		
		                        		
		                        	
10.Single-cell RNA sequencing reveals the process of CA19-9 production and dynamics of the immune microenvironment between CA19-9 (+) and CA19-9 (-) PDAC
Deyu ZHANG ; Fang CUI ; Kailian ZHENG ; Wanshun LI ; Yue LIU ; Chang WU ; Lisi PENG ; Zhenghui YANG ; Qianqian CHEN ; Chuanchao XIA ; Shiyu LI ; Zhendong JIN ; Xiaojiang XU ; Gang JIN ; Zhaoshen LI ; Haojie HUANG
Chinese Medical Journal 2024;137(20):2415-2428
		                        		
		                        			
		                        			Background::Pancreatic ductal adenocarcinoma (PDAC) is one of the main types of malignant tumor of the digestive system, and patient prognosis is affected by difficulties in early diagnosis, poor treatment response, and a high postoperative recurrence rate. Carbohydrate antigen 19-9 (CA19-9) has been widely used as a biomarker for the diagnosis and postoperative follow-up of PDAC patients. Nevertheless, the production mechanism and potential role of CA19-9 in PDAC progression have not yet been elucidated.Methods::We performed single-cell RNA sequencing on six samples pathologically diagnosed as PDAC (three CA19-9-positive and three CA19-9-negative PDAC samples) and two paracarcinoma samples. We also downloaded and integrated PDAC samples (each from three CA19-9-positive and CA19-9-negative patients) from an online database. The dynamics of the proportion and potential function of each cell type were verified through immunofluorescence. Moreover, we built an in vitro coculture cellular model to confirm the potential function of CA19-9. Results::Three subtypes of cancer cells with a high ability to produce CA19-9 were identified by the markers TOP2A, AQP5, and MUC5AC. CA19-9 production bypass was discovered on antigen-presenting cancer-associated fibroblasts (apCAFs). Importantly, the proportion of immature ficolin-1 positive (FCN1+) macrophages was high in the CA19-9-negative group, and the proportion of mature M2-like macrophages was high in the CA19-9-positive group. High proportions of these two macrophage subtypes were associated with an unfavourable clinical prognosis. Further experiments indicated that CA19-9 could facilitate the transformation of M0 macrophages into M2 macrophages in the tumor microenvironment. Conclusions::Our study described CA19-9 production at single-cell resolution and the dynamics of the immune atlas in CA19-9-positive and CA19-9-negative PDAC. CA19-9 could promote M2 polarization of macrophage in the pancreatic tumor microenvironment.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail