1.Anti -epileptic effect of 2 -deoxy -D -glucose by activation of miR -194/KATP signaling pathway.
Journal of Central South University(Medical Sciences) 2022;47(8):1099-1107
OBJECTIVES:
Epilepsy is a syndrome of central nervous system dysfunction caused by many reasons, which is mainly characterized by abnormal discharge of neurons in the brain. Therefore, finding new targets for epilepsy therapy has always been the focus and hotspot in neurological research field. Studies have found that 2-deoxy-D-glucose (2-DG) exerts anti-epileptic effect by up-regulation of KATP channel subunit Kir6.1, Kir6.2 mRNA and protein. By using the database of TargetScan and miRBase to perform complementary pairing analysis on the sequences of miRNA and related target genes, it predicted that miR-194 might be the upstream signaling molecule of KATP channel. This study aims to explore the mechanism by which 2-DG exerts its anti-epileptic effect by regulating KATP channel subunits Kir6.1 and Kir6.2 via miR-194.
METHODS:
A magnesium-free epilepsy model was established and randomly divided into a control group, an epilepsy group (EP group), an EP+2-DG group, and miR-194 groups (including EP+miR-194 mimic, EP+miR-194 mimic+2-DG, EP+miR-194 mimic control, EP+miR-194 inhibitor, EP+miR-194 inhibitor+2-DG, and EP+miR-194 inhibitor control groups). The 2-DG was used to intervene miR-194 mimics, patch-clamp method was used to detect the spontaneous recurrent epileptiform discharges, real-time PCR was used to detect neuronal miR-194, Kir6.1, and Kir6.2 expressions, and the protein levels of Kir6.1 and Kir6.2were detected by Western blotting.
RESULTS:
Compared with the control group, there was no significant difference in the amplitude of spontaneous discharge potential in the EP group (P>0.05), but the frequency of spontaneous discharge was increased (P<0.05). Compared with the EP group, the frequency of spontaneous discharge was decreased (P<0.05). Compared with the EP+miR-194 mimic control group, the mRNA and protein expressions of Kir6.1 and Kir6.2 in the EP+miR-194 mimic group were down-regulated (all P<0.05). Compared with the EP+miR-194 inhibitor control group, the mRNA and protein expressions of Kir6.1 and Kir6.2 in the EP+miR-194 inhibitor group were up-regulated (all P<0.05). After pretreatment with miR-194 mimics, the mRNA and protein expression levels of KATP channel subunits Kir6.1 and Kir6.2 were decreased (all P<0.05). Compared with the EP+2-DG group, the mRNA and protein expression levels of Kir6.1 and Kir6.2 in the EP+miR-194 mimic+2-DG group were down-regulated (all P<0.05) and the mRNA and protein expression levels of Kir6.1 and Kir6.2 in the EP+miR-194 inhibitor+2-DG group were up-regulated (all P<0.05).
CONCLUSIONS
The 2-DG might play an anti-epilepsy effect by up-regulating KATP channel subunits Kir6.1 and Kir6.2via miR-194.
Adenosine Triphosphate
;
Anticonvulsants
;
Deoxyglucose/pharmacology*
;
Epilepsy/genetics*
;
Glucose
;
Humans
;
MicroRNAs/genetics*
;
Potassium Channels, Inwardly Rectifying/metabolism*
;
RNA, Messenger/metabolism*
;
Signal Transduction
2.Resveratrol augments ER stress and the cytotoxic effects of glycolytic inhibition in neuroblastoma by downregulating Akt in a mechanism independent of SIRT1.
Regina M GRAHAM ; Fiorela HERNANDEZ ; Nataly PUERTA ; Guillermo DE ANGULO ; Keith A WEBSTER ; Steven VANNI
Experimental & Molecular Medicine 2016;48(2):e210-
Cancer cells typically display increased rates of aerobic glycolysis that are correlated with tumor aggressiveness and a poor prognosis. Targeting the glycolytic pathway has emerged as an attractive therapeutic route mainly because it should spare normal cells. Here, we evaluate the effects of combining the inhibition of glycolysis with application of the polyphenolic compound resveratrol (RSV) in neuroblastoma (NB) cancer cell lines. Inhibiting glycolysis with 2-deoxy-D-glucose (2-DG) significantly reduced NB cell viability and was associated with increased endoplasmic reticulum (ER) stress and Akt activity. Administration of 2-DG increased the expression of the ER molecular chaperones GRP78 and GRP94, the prodeath protein C/EBP homology protein (CHOP) and the phosphorylation of Akt at S473, T450 and T308. Combined treatment with both RSV and 2-DG reduced GRP78, GRP94 and Akt phosphorylation but increased CHOP and NB cell death when compared with the administration of 2-DG alone. The selective inhibition of Akt activity also decreased 2-DG-induced GRP78 and GRP94 expression and increased CHOP expression, suggesting that Akt can modulate ER stress. Protein phosphatase 1α (PP1α) was activated by RSV, as indicated by a reduction in PP1α phosphorylation at T320. Pretreatment of cells with tautomycin, a selective PP1α inhibitor, prevented the RSV-mediated decrease in Akt phosphorylation, suggesting that RSV enhances 2-DG-induced cell death by activating PP1 and downregulating Akt. The RSV-mediated inhibition of Akt in the presence of 2-DG was not prevented by the selective inhibition of SIRT1, a known target of RSV, indicating that the effects of RSV on this pathway are independent of SIRT1. We propose that RSV inhibits Akt activity by increasing PP1α activity, thereby potentiating 2-DG-induced ER stress and NB cell death.
Cell Death
;
Cell Line
;
Cell Survival
;
Deoxyglucose
;
Endoplasmic Reticulum
;
Glycolysis
;
Molecular Chaperones
;
Neuroblastoma*
;
Phosphorylation
;
Prognosis
3.Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Findings of Post Traumatic Lymphangioma in a Young Adult Male.
Sang Don KWON ; Kyung Ah CHUN ; Eun Jung KONG ; Ihn Ho CHO
Vascular Specialist International 2016;32(3):137-139
The authors report the case of a 34-year-old male, who underwent a fluorine-18 fluoro deoxyglucose (¹⁸F-FDG) positron emission tomography/computed tomography (PET/CT) scan 7 years after trauma for the evaluation of multifocal masses in the right iliac and right inguinal areas. CT findings showed multifocal low density masses and ¹⁸F-FDG PET revealed slightly increased uptake (maximum standardized uptake value [SUVmax] 3.1). These findings did not exclude the possibility of a benign or malignant lesion. To achieve differential diagnosis, partial surgical excision was performed and a pathologic examination subsequently revealed lymphangioma. Here, the authors describe the ¹⁸F-FDG PET/CT findings of a rare case of lymphangioma resulting from trauma.
Adult
;
Deoxyglucose
;
Diagnosis, Differential
;
Electrons*
;
Fluorodeoxyglucose F18
;
Humans
;
Lymphangioma*
;
Male*
;
Positron-Emission Tomography and Computed Tomography
;
Young Adult*
4.miR-181c inhibits glycolysis by targeting hexokinase 2 in cancer-associated fibroblasts.
Haibing LAN ; Liang LUO ; Xiefei QI ; Yuanqi GONG ; Yu CHEN
Journal of Southern Medical University 2015;35(11):1619-1623
OBJECTIVETo investigate the role of miR-181c in glycolysis of cancer-associated fibroblasts (CAFs) and explore the mechanism.
METHODSHuman lung CAFs and normal fibroblasts (NFs), isolated from fresh human lung adenocarcinoma tissue specimens by primary culture of tissue explants, were transfected with a miR -181c mimics, a miR-181c inhibitor, a siRNA siRNA-HK2 or the vector HK2-vector via Lipofectamine(TM) 2000. Quantitative real-time PCR was used to analyze the changes in miR-125b expression in the transfected cells; hexokinase-2 (HK2) protein expression in the cells was detected using Western blotting, and the cellular glucose uptake was assessed with 2-NBDG. Lactate production in the cells was examined and expression of HK2 mRNA was detected with dual luciferase reporter gene assay.
RESULTSNo obvious difference was found in the cell morphology between CAFs and NFs. Compared with the NFs, the CAFs showed obviously increased glucose uptake, lactate production and HK2 protein expression with decreased expressions of the miR-181 family (P<0.05). Transfection with the miR-181 inhibito- rsignificantly increased glucose uptake, lactate production and HK2 protein expression in the NFs. In CAFs, transfection with the miR-181 mimics caused significantly lowered glucose uptake, lactate production and HK2 protein expression of. Knockdown of endogenous HK2 by siRNA abolished miR-181 mimics-mediated decrease of glucose uptake and lactate production in CAFs, while transfection with miR-181 mimics suppressed HK2 overexpression-induced enhancement of glucose uptake and lactate production in NFs.
CONCLUSIONTransfection with miR-181 mimics can suppress glycolysis in CAFs by inhibiting HK2 expression.
4-Chloro-7-nitrobenzofurazan ; analogs & derivatives ; Adenocarcinoma ; pathology ; Deoxyglucose ; analogs & derivatives ; Fibroblasts ; drug effects ; Glycolysis ; Hexokinase ; antagonists & inhibitors ; Humans ; Lung Neoplasms ; pathology ; MicroRNAs ; pharmacology ; RNA, Messenger ; RNA, Small Interfering ; Real-Time Polymerase Chain Reaction ; Transfection ; Tumor Cells, Cultured
5.2-Deoxy-D-glucose combined with Taxol inhibits VEGF expression and induces apoptosis in orthotopically transplanted breast cancer in C3H mice.
Qianwen ZHANG ; Huaiyong GAN ; Zenong CHENG ; Surong ZHAO ; Chao CHEN ; Chenchen JIANG ; Hao LIU ; Zhiwen JIANG
Journal of Southern Medical University 2014;34(2):193-196
OBJECTIVETo investigate the antineoplastic effects of 2-Deoxy-D-glucose (2-DG) combined with Taxol on orthotopically transplanted breast cancer in C3H mice and explore the mechanism.
METHODSC3H mice bearing orthotopically transplanted breast cancer xenograft were randomly divided into 4 groups, namely the control group, 2-DG group, Taxol group, and 2-DG+Taxol group. The corresponding drugs were administered intraperitoneally every 3 days for 18 consecutive days, and the tumor volume was measured every 3 days to draw the tumor growth curve. The mice were then sacrificed to measure the tumor weight on day 19 and examine tumor cell apoptosis with TUNEL assay and VEGF expression using immunohistochemistry.
RESULTS2-DG combined with Taxol obviously suppressed the tumor growth with a tumor inhibition rate of 66.06% as compared to the rate of 36.97% in Taxol group. The combined treatment also caused more obvious cell apoptosis and significantly reduced VEGF expression in the tumor cells as compared with the other groups.
CONCLUSION2-DG can enhance the inhibitory effect of Taxol on orthotopically transplanted breast cancer xenograft in C3H mice probably by inducing tumor cell apoptosis and lowering VEGF expressions.
Animals ; Antineoplastic Agents ; pharmacology ; therapeutic use ; Apoptosis ; Breast Neoplasms ; drug therapy ; pathology ; Cell Line, Tumor ; Deoxyglucose ; pharmacology ; therapeutic use ; Drug Synergism ; Female ; Mice ; Mice, Inbred C3H ; Paclitaxel ; pharmacology ; therapeutic use ; Vascular Endothelial Growth Factor A ; metabolism ; Xenograft Model Antitumor Assays
6.2-deoxy-D-glucose modified supermagnetic iron oxide nanoparticles enhance the contrasting effect on MRI of human lung adenocarcinoma A549 tumor in nude mice.
Xiuhong SHAN ; Deqi YUAN ; Fei XIONG ; Ning GU ; Peng WANG
Chinese Journal of Oncology 2014;36(2):85-91
OBJECTIVETo evaluate the role of 2-deoxy-D-glucose (2-DG) modified supermagnetic iron oxide nanoparticles (SPIO) (γ-Fe2O3@DMSA-DG NPs) in tumor detection as a magnetic resonance imaging (MRI) contrast agent.
METHODSγ-Fe2O3@DMSA-DG NPs was prepared. The degree of A549 cells targeted absorption of γ-Fe2O3@DMSA-DG NPs was detected by Prussian blue staining, colorimetric assay, T2W and multi-echo sequence MRI. γ-Fe2O3@DMSA NPs was used as a control agent, and free D-glucose as a competitive inhibitor. Human lung adenocarcinoma A549 xenograft tumor was prepared in nude mice. Sterile aqueous suspension of γ-Fe2O3@DMSA NPs or γ-Fe2O3@DMSA-DG NPs was injected into the tail vein of nude mice. Before and 6, 12, 24, 48 h after injection, MRI imaging of the mice was performed. T2 signal intensity of the tumor, brain, liver and thigh skeletal muscles, and T2 values of the tumors were measured.
RESULTSThe average diameter of the particles was about 10 nm, and there were no significant differences between the diameters of γ-Fe2O3@DMSA NPs and γ- Fe2O3@DMSA-DG NPs. The IR spectra showed the C-N retractable vibration peak at γ-Fe2O3@DMSA-DG NPs surface, indicating that 2-DG was conjugated to the γ-Fe2O3@DMSA NPs. The Prussian blue staining, colorimetric assay, MRI T2 signal intensity and T2 values revealed that γ-Fe2O3@DMSA-DG NPs were significantly more absorbed by A549 cells at growth peak than γ-Fe2O3@DMSA NPs, and the absorption of γ-Fe2O3@DMSA-DG NP was inhibited by free D-glucose. The results of in vivo examination showed that before and at 6, 12, 24, 48 h after injection of γ-Fe2O3@DMSA-DG NPs, the mean T2 signal intensities of the tumors were (326.00 ± 16.26)s, (276.40 ± 5.13)s, (268.40 ± 30.58)s, (240.40 ± 25.93)s, (262.20 ± 30.04)s, respectively, and the T2 values of the tumors were (735.80 ± 20.93) ms, (645.80 ± 69.58) ms, (615.00 ± 124.61) ms, (570.60 ± 67.78) ms, and (537.80 ± 105.29) ms, respectively. However, before and at 6, 12, 24, 48 h after injection of γ-Fe2O3@DMSA NPs, the mean T2 signal intensities of the tumors were (335.60 ± 4.93)s, (290.80 ± 5.93)s, (273.40 ± 15.08)s, (327.40 ± 16.65)s, and (313.20 ± 20.45)s, respectively, and T2 values were (686.00 ± 21.44)ms, (617.80 ± 69.93)ms, (645.20 ± 85.89)ms, (669.40 ± 13.72)ms, and (608.80 ± 61.90)ms, respectively. The T2 signal intensity and T2 value of the tumors were not declined generally after injection. The liver T2 signal intensity was decreased after injection of both γ-Fe2O3@DMSA-DG NPs and γ-Fe2O3@DMSA NPs, and T2 signal intensity of the brain and muscle did not show significant changes.
CONCLUSIONSγ-Fe2O3@DMSA-DG NPs has an ability to target glucose receptors overexpressed in tumors, and may serve as a MRI contrast agent for tumor detection.
Adenocarcinoma ; diagnosis ; metabolism ; pathology ; Animals ; Cell Line, Tumor ; Colorimetry ; Contrast Media ; chemistry ; pharmacokinetics ; Deoxyglucose ; chemistry ; pharmacokinetics ; Ferric Compounds ; chemistry ; pharmacokinetics ; Humans ; Image Enhancement ; Lung Neoplasms ; diagnosis ; metabolism ; pathology ; Magnetic Resonance Imaging ; Magnetite Nanoparticles ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Neoplasm Transplantation ; Particle Size
7.Serial Positron Emission Tomography Findings and Neuropsychological Assessments in Limbic Encephalitis.
Tae Eun KIM ; Jeong Ho PARK ; Tae Kyeong LEE ; Ki Bum SUNG ; Sun Ah PARK
Soonchunhyang Medical Science 2014;20(1):7-13
OBJECTIVE: Limbic encephalitis (LE) is characterized by rapid development of impaired cognitive function, seizure and psychiatric symptoms. Brain 18fluoro labelled deoxyglucose (18FDG)-positron emission tomography (PET) typically showed glucose hypermetabolism in the temporomesial region in the acute stage. Although several studies about brain 18FDG-PET in LE have been reported, serial 18FDG-PET findings during the course of the disease are limited. The purpose of this study is to analyze serial 18FDG-PET findings in LE and to compare them with the results of neuropsychological test. METHODS: We studied prospectively two patients diagnosed as LE using clinical criteria. They underwent serial brain magnetic resonance imaging (MRI) and 18FDG-PET scans. They also received detailed neuropsychological tests. RESULTS: Initial 18FDG-PET presented glucose hypermetabolism in unilateral temporomesial region without obvious abnormalities in brain MRI. Follow-up 18FDG-PET images obtained three month later displayed hypometabolism in both temporomesial region. Correspondingly, neuropsychological studies revealed prominent visuospatial and verbal memory deficits. CONCLUSION: The initial 18FDG-PET was very sensitive in visualizing the disease process compared with MRI and suggesting more markedly functional impairment than structural damage in early stage of LE. This was well correlated with cognitive dysfunction measured by neuropsychological test such as anterograde episodic memory loss involving both verbal and non-verbal materials.
Brain
;
Deoxyglucose
;
Follow-Up Studies
;
Glucose
;
Humans
;
Limbic Encephalitis*
;
Magnetic Resonance Imaging
;
Memory Disorders
;
Memory, Episodic
;
Neuropsychological Tests
;
Paraneoplastic Syndromes
;
Positron-Emission Tomography*
;
Prospective Studies
;
Seizures
8.2-DG enhances TRAIL-induced apoptosis of leukemia HL-60 cells.
Su-Rong ZHAO ; Hai-Feng DUAN ; Pei ZHANG ; Hao LIU ; Chen-Chen JIANG ; Zhi-Wen JIANG
Journal of Experimental Hematology 2013;21(2):351-355
This study was purposed to investigate the effects of 2-deoxy-D-glucose (2-DG) on sensitizing HL-60 cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis and its possible mechanism. The proliferative inhibition of HL-60 cells treated with different concentrations of 2-DG and TRAIL was measured by MTT assay. The cells were treated with 2-DG, TRAIL, and 2-DG combined with TRAIL at the concentration < IC50 value, i.e. 10 mmol/L for 2-DG and 100 ng/ml for TRAIL. Apoptosis was analyzed by flow cytometry with PI staining; the expression of RIP1, GRP78, and PARP was analyzed by Western blot; the activity of caspase-3 was detected by special detection kit. The results showed that the combined treatment of HL-60 cells for 48 h induced an apoptotic rate of (45.1 ± 4.3)%, which was significantly higher than that of treated with 2-DG or TRAIL alone; at the same time, the combined treatment potentiated the expression of GRP78 and caspase-3 activity, and down-regulated the expression of RIP1. It is concluded that 2-DG can sensitize HL-60 cells to TRAIL-induced apoptosis, which may be correlated with excessive endoplasmic reticulum stress response, down-regulation of RIP1, and increase of caspase-3 activity.
Apoptosis
;
drug effects
;
Caspase 3
;
metabolism
;
Deoxyglucose
;
pharmacology
;
HL-60 Cells
;
Heat-Shock Proteins
;
metabolism
;
Humans
;
Nuclear Pore Complex Proteins
;
metabolism
;
RNA-Binding Proteins
;
metabolism
;
TNF-Related Apoptosis-Inducing Ligand
;
metabolism
;
pharmacology
9.Comparison of the targeting properties of 2-deoxy-D-glucose-conjugated nanoparticles to breast cancer MDA-MB-231 cells and breast fibroblasts cells.
Peng WANG ; Xiu-hong SHAN ; Fei XIONG ; Ning GU ; Hui QIAN ; Yu FAN ; Ya-fei WANG
Chinese Journal of Oncology 2013;35(8):566-571
OBJECTIVETo compare the differences in uptake of 2-deoxy-D-glucose (2-DG)-conjugated nanoparticles between breast carcinoma MDA-MB-231 cells with high metabolism and breast fibroblasts with normal metabolism, and investigate the feasibility of using the coated nanoparticles as a MRI-targeted contrast agent for highly metabolic carcinoma cells.
METHODSThe γ-Fe2O3@DMSA-DG was prepared. The glucose metabolism level of both cell lines was determined. The targeting efficacy of γ-Fe2O3@DMSA-DG and γ-Fe2O3@DMSA NPs to breast carcinoma MDA-MB-231 cells and breast fibroblasts at 10 min, 30 min, 1 h and 2 h was measured with Prussian blue staining and UV colorimetric assay. MRI was performed to visualize the changes of T2WI signal intensity.
RESULTSPrussian blue staining showed more intracellular blue granules in the MDA-MB-231 cells of γ-Fe2O3@DMSA-DG NPs group than that in the γ-Fe2O3@DMSA NPs group, and the γ-Fe2O3@DMSA-DG uptake was greatly competed by free D-glucose. As revealed by UV colorimetric assay, MDA-MB-231 cells also showed that the cellular iron amount of γ-Fe2O3@DMSA-DG group was significantly higher than that of the γ-Fe2O3@DMSA group and γ-Fe2O3@DMSA-DG + D-glucose group, statistically with a significant difference between them. MRI showed that the signal intensity of γ-Fe2O3@DMSA-DG group was decrease significantly, the T2 signal intensity was decreased by 10.5%, 37.5%, 72.9%, 92.0% for 10 min, 30 min, 1 h and 2 h, respectively. In contrast, the signal intensity did not show obvious decrease in the γ-Fe2O3@DMSA-DG group, the T2 signal intensity was decreased by 8.5%, 11.4%, 32.0%, 76.7% for 10 min, 30 min, 1 h and 2 h, respectively. However, HUM-CELL-0056 cells did not produce apparent difference for positive staining in the γ-Fe2O3@DMSA-DG group, γ-Fe2O3@DMSA group and γ-Fe2O3@DMSA-DG+D-glucose group, and the signal intensity also did not produce apparent difference.
CONCLUSIONSγ-Fe2O3@DMSA-DG has good targeting ability to highly metabolic breast carcinoma (MDA-MB-231) cells. It is feasible to serve as a specific MRI-targeted contrast agent for highly metabolic carcinoma cells, and deserves further studies in vivo.
Breast Neoplasms ; metabolism ; pathology ; Cell Line, Tumor ; Cells, Cultured ; Colorimetry ; methods ; Contrast Media ; pharmacokinetics ; Deoxyglucose ; chemistry ; pharmacokinetics ; Female ; Ferric Compounds ; chemistry ; pharmacokinetics ; Fibroblasts ; cytology ; metabolism ; Glucose ; metabolism ; Humans ; Iron ; metabolism ; Magnetic Resonance Imaging ; methods ; Nanoconjugates ; chemistry ; Particle Size ; Succimer ; chemistry ; pharmacokinetics
10.Glycosylation inhibitor 2-deoxy-D-glucose sensitizes oral cancer cells to TRAIL-induced apoptosis.
Jincheng XU ; Yingying HUANG ; Yang LI ; Longjian PU ; Fei XIA ; Chenchen JIANG ; Hao LIU ; Zhiwen JIANG
Journal of Southern Medical University 2013;33(4):524-527
OBJECTIVETo investigate the effect of 2-deoxy-D-glucose (2-DG) in enhancing the sensitivity of oral cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis.
METHODSThe oral cancer cell line KB was incubated in the presence of different concentrations (0, 0.625, 1.25, 2.5, 5, and 10 mmol/L) of 2-DG with or without TRAIL (200 ng/ml). The cell viability was measured using MTT assay and cell apoptosis was detected using flow cytometry with propidium iodide (PI) staining. KB cells treated with 5 mmol/L 2-DG with or without TRAIL for 0, 6, 16, or 24 h were examined with Western blotting for protein expressions of death receptor 5 (DR5) and caspase-3.
RESULTSTreatment of the cells with 5 mmol/L 2-DG for 24, 48 and 72 h resulted in a cell viability of 25.25%, 69.06%, and 59.19%, respectively. Combined treatment with 5 mmol/L 2-DG with TRAIL for 24 significantly enhanced the cell apoptotic rate (72.5%) as compared to the rate induced by TRAIL alone (45.3%) and by 2-DG (15.9%) alone. 2-DG treatment markedly up-regulated DR5 and caspase-3 expression and enhanced the inhibitory effect of TRAIL on cell colony formation.
CONCLUSION2-DG sensitizes oral cancer cells to TRAIL- induced apoptosis by up-regulating DR5 and caspase-3 expressions.
Apoptosis ; drug effects ; Caspase 3 ; metabolism ; Cell Line, Tumor ; Deoxyglucose ; pharmacology ; Drug Synergism ; Gene Expression Regulation, Neoplastic ; Humans ; Receptors, TNF-Related Apoptosis-Inducing Ligand ; metabolism ; TNF-Related Apoptosis-Inducing Ligand ; pharmacology

Result Analysis
Print
Save
E-mail