1.Effect of Matrix Metallopeptidase 13 on the Function of Mouse Bone Marrow-derived Dendritic Cells.
Xiao-Dong LI ; Xin-Rui ZHANG ; Zhi-Hao LI ; Yang YANG ; Duo ZHANG ; Heng ZHENG ; Shu-Ying DONG ; Juan CHEN ; Xian-Dong ZENG
Chinese Medical Journal 2017;130(6):717-721
BACKGROUNDDendritic cells are professional antigen-presenting cells found in an immature state in epithelia and interstitial space, where they capture antigens such as pathogens or damaged tissue. Matrix metallopeptidase 13 (MMP-13), a member of the collagenase subfamily, is involved in many different cellular processes and is expressed in murine bone marrow-derived dendritic cells (DCs). The function of MMP-13 in DCs is not well understood. Here, we investigated the effect of MMP-13 on DC maturation, apoptosis, and phagocytosis.
METHODSBone marrow-derived dendritic cells were obtained from C57BL/6 mice. One short-interfering RNA specific for MMP-13 was used to transfect DCs. MMP-13-silenced DCs and control DCs were prepared, and apoptosis was measured using real-time polymerase chain reaction and Western blotting. MMP-13-silenced DCs and control DCs were analyzed for surface expression of CD80 and CD86 and phagocytosis capability using flow cytometry.
RESULTSCompared to the control DCs, MMP-13-silenced DCs increased expression of anti-apoptosis-related genes, BAG1 (control group vs. MMP-13-silenced group: 4.08 ± 0.60 vs. 6.11 ± 0.87, P = 0.008), BCL-2 (control group vs. MMP-13-silenced group: 7.54 ± 0.76 vs. 9.54 ± 1.29, P = 0.036), and TP73 (control group vs. MMP-13-silenced group: 4.33 ± 0.29 vs. 5.60 ± 0.32, P = 0.001) and decreased apoptosis-related genes, CASP1 (control group vs. MMP-13-silenced group: 3.79 ± 0.67 vs. 2.54 ± 0.39, P = 0.019), LTBR (control group vs. MMP-13-silenced group: 9.23 ± 1.25 vs. 6.24 ± 1.15, P = 0.012), and CASP4 (control group vs. MMP-13-silenced group: 2.07 ± 0.56 vs. 0.35 ± 0.35, P = 0.002). Protein levels confirmed the same expression pattern. MMP-13-silenced groups decreased expression of CD86 on DCs; however, there was no statistical difference in CD80 surface expression. Furthermore, MMP-13-silenced groups exhibited weaker phagocytosis capability.
CONCLUSIONThese results indicate that MMP-13 inhibition dampens DC maturation, apoptosis, and phagocytosis.
Animals ; Apoptosis ; drug effects ; physiology ; Bone Marrow Cells ; cytology ; Dendritic Cells ; cytology ; drug effects ; metabolism ; Female ; Lipopolysaccharides ; pharmacology ; Matrix Metalloproteinase 13 ; metabolism ; physiology ; Mice ; Mice, Inbred C57BL ; RNA, Small Interfering
2.The development and function of dendritic cell populations and their regulation by miRNAs.
Protein & Cell 2017;8(7):501-513
		                        		
		                        			
		                        			Dendritic cells (DCs) are important immune cells linking innate and adaptive immune responses. DCs encounter various self and non-self antigens present in the environment and induce different types of antigen specific adaptive immune responses. DCs can be classified into lymphoid tissue-resident DCs, migratory DCs, non-lymphoid resident DCs, and monocyte derived DCs (moDCs). Recent work has also established that DCs consist of developmentally and functionally distinct subsets that differentially regulate T lymphocyte function. The development of different DC subsets has been found to be regulated by a network of different cytokines and transcriptional factors. Moreover, the response of DC is tightly regulated to maintain the homeostasis of immune system. MicroRNAs (miRNAs) are an important class of cellular regulators that modulate gene expression and thereby influence cell fate and function. In the immune system, miRNAs act at checkpoints during hematopoietic development and cell subset differentiation, they modulate effector cell function, and are implicated in the maintenance of homeostasis. DCs are also regulated by miRNAs. In the past decade, much progress has been made to understand the role of miRNAs in regulating the development and function of DCs. In this review, we summarize the origin and distribution of different mouse DC subsets in both lymphoid and non-lymphoid tissues. The DC subsets identified in human are also described. Recent progress on the function of miRNAs in the development and activation of DCs and their functional relevance to autoimmune diseases are discussed.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Autoimmune Diseases
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Dendritic Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			MicroRNAs
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Monocytes
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			T-Lymphocytes
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			immunology
		                        			
		                        		
		                        	
3.Inducing Effect of Modified Cytokine Cocktail on Dendritic Cells.
Wei XU ; Bao-Long WANG ; Qiong HUANG ; Zhi-Feng ZHOU ; Peng LUO
Journal of Experimental Hematology 2016;24(1):197-204
OBJECTIVETo investigate the inducing effect of 'modified' cytokine cocktail on the dendritic cell maturation and migration capability.
METHODSPBMNC were isolated from human peripheral blood stem cell (PBSC) by using density gradient centrifugation, the immature DC (imDC) were induced by using GM-CSF and IL-4 in vitro. Total A549 RNA was transfected into imDC by using electroporation, which was stimulated to matuation by the "gold standard" cytokine cocktail and "modified" cytokine cocktail, respectively. The expression of DC surface markers (CD11c, HLA-DR, CD80, CD83 and CD86) and chemokine receptor (CCR5, CCR7 and CXCR4) were detected by flow cytometry; the mRNA expression levels of DC chemokine receptor (CCR2, CCR5, CCR7, CXCR3 and CXCR4) and chemokine (CCL2, CCL3, CCL5, CCL19, CCL21, CXCL10 and CXCL12) were detected by RT-PCR.
RESULTSAs compared with "gold standard cytokine cocktail", the "modified" cytokine cocktail-induced DC expressed higher levels of surface markers (CD11c, HLA-DR, CD80, CD83 and CD86), chemokine receptors (CXCR4) and chemokine (CCL2, CCL3, CCL5, CCL19, CCL21, CXCL10 and CXCL12).
CONCLUSIONThe "modified" cytokine cocktail can more effectively induce the DC maturation, enhace the migratory capability of DC and more generate the immunostimulatory DC, when compared with the "gold standard" cytokine cocktail effect.
Antigens, CD ; metabolism ; Cell Culture Techniques ; Cell Differentiation ; Chemokines ; metabolism ; Cytokines ; pharmacology ; Dendritic Cells ; cytology ; drug effects ; Flow Cytometry ; Granulocyte-Macrophage Colony-Stimulating Factor ; pharmacology ; Humans ; Interleukin-4 ; pharmacology ; Receptors, Chemokine ; metabolism
4.Clinical Efficacy of Dendritic Cells and Cytokine-induced Killer Cells Combined with Chemotherapy for Treating Newly diagnosed Multiple Myeloma and their Effect on Function of CD4(+) CD25(+) T Cells in Peripheral Blood.
Xia ZHAO ; Hui-Fang DING ; Min XU ; Jian XING ; Guang LU ; Liang WANG ; Guo-Qiang LIU
Journal of Experimental Hematology 2016;24(1):122-126
OBJECTIVETo investigate the efficacy of dendritic cells and cytokine-induced killer cells (DC-CIK) combined with chemotherapy for treating newly diagnosed patients with multiple myeloma (MM) and their effect on cellular immune functions of CD4(+) CD25(+) Treg cells in peripheral blood after adoptive immunotherapy.
METHODSFouty two patients with MM were randomly divided into two groups: chemotherapy group and combined therapy group; 20 patients in chemotherapy group were treated by chemotherapy only, 22 patients in combined therapy group were treated by adoptive immunotherapy (DC-CIK) combined with chemotherapy, and the clinical outcomes of patients and the levels of CD4(+) CD25(+) Treg cells in peripheral blood between 2 groups were compared.
RESULTSAfter treating for 3 weeks, the quality of life, clinical index and survival of patients in combined therapy group were better than those of patients in chemotherapy group (P < 0.05); the ratios of CD4(+) CD25(+)/CD4(+) and CD4(+) CD25(+) FoxP3(+)/CD4(+) CD25(+) of patients in combined therapy group were obviously lower than those of patients in chemotherapy group (P < 0.05).
CONCLUSIONThe immunotherapy of DC-CIK can strengthen the activities of CD4(+) CD25(+) Treg cells, which combined with chemotherapy can be an effective and promising effects for treatment of patients with MM.
Cell- and Tissue-Based Therapy ; Cytokine-Induced Killer Cells ; cytology ; Dendritic Cells ; cytology ; Humans ; Immunotherapy, Adoptive ; Multiple Myeloma ; drug therapy ; therapy ; T-Lymphocytes, Regulatory ; cytology ; Treatment Outcome
5.Acute Myeloid Leukemia With MLL Rearrangement and CD4+/CD56+ Expression can be Misdiagnosed as Blastic Plasmacytoid Dendritic Cell Neoplasm: Two Case Reports.
Ju Mee LEE ; In Suk KIM ; Jeong Nyeo LEE ; Sang Hyuk PARK ; Hyung Hoi KIM ; Chulhun L CHANG ; Eun Yup LEE ; Hye Ran KIM ; Seung Hwan OH ; Sae Am SONG
Annals of Laboratory Medicine 2016;36(5):494-497
		                        		
		                        			
		                        			No abstract available.
		                        		
		                        		
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Antigens, CD4/*metabolism
		                        			;
		                        		
		                        			Antigens, CD56/*metabolism
		                        			;
		                        		
		                        			Bone Marrow/metabolism/pathology
		                        			;
		                        		
		                        			Dendritic Cells/cytology/*metabolism
		                        			;
		                        		
		                        			Diagnostic Errors
		                        			;
		                        		
		                        			Exons
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Flow Cytometry
		                        			;
		                        		
		                        			Gene Rearrangement
		                        			;
		                        		
		                        			Hematologic Neoplasms/diagnosis
		                        			;
		                        		
		                        			Histone-Lysine N-Methyltransferase/genetics
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Immunohistochemistry
		                        			;
		                        		
		                        			In Situ Hybridization, Fluorescence
		                        			;
		                        		
		                        			Leukemia, Myeloid, Acute/*diagnosis
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Middle Aged
		                        			;
		                        		
		                        			Myeloid-Lymphoid Leukemia Protein/genetics
		                        			;
		                        		
		                        			Real-Time Polymerase Chain Reaction
		                        			;
		                        		
		                        			Sequence Analysis, DNA
		                        			;
		                        		
		                        			Transcription Factors/genetics
		                        			;
		                        		
		                        			Translocation, Genetic
		                        			
		                        		
		                        	
6.Death receptor 6 is a novel plasmacytoid dendritic cell-specific receptor and modulates type I interferon production.
Jingyun LI ; Qiumei DU ; Rui HU ; Yanbing WANG ; Xiangyun YIN ; Haisheng YU ; Peishuang DU ; Joël PLUMAS ; Laurence CHAPEROT ; Yong-Jun LIU ; Liguo ZHANG
Protein & Cell 2016;7(4):291-294
		                        		
		                        		
		                        		
		                        			Dendritic Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Enzyme-Linked Immunosorbent Assay
		                        			;
		                        		
		                        			HEK293 Cells
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Interferon Regulatory Factor-7
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Interferon Type I
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Interferon-gamma
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Oligonucleotides
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA Interference
		                        			;
		                        		
		                        			RNA, Small Interfering
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Real-Time Polymerase Chain Reaction
		                        			;
		                        		
		                        			Receptors, Tumor Necrosis Factor
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
7.Effects of dendritic cell-activated and cytokine-induced killer cell therapy on 22 children with acute myeloid leukemia after chemotherapy.
Yan BAI ; Jin-e ZHENG ; Nan WANG ; He-hua CAI ; Li-na ZHAI ; Yao-hui WU ; Fang WANG ; Run-ming JIN ; Dong-feng ZHOU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):689-693
		                        		
		                        			
		                        			The efficiency of dendritic cell-activated and cytokine-induced killer cell (DC-CIK) therapy on children with acute myeloid leukemia (AML) after chemotherapy was investigated. Mononuclear cells were collected from children achieving complete remission after chemotherapy, cultured in vitro and transfused back into the same patient. Interleukin-2 (IL-2) was injected subcutaneously every other day 10 times at the dose of 1 × 10(6) units. Peripheral blood lymphocyte subsets and minimal residual disease (MRD) were detected by flow cytometry. Function of bone marrow was monitored by methods of morphology, immunology, cytogenetics and molecular biology. The side effects were also observed during the treatment. The average follow-up period for all the 22 patients was 71 months and relapse occurred in two AML patients (9.1%). The percentage of CD3(+)/CD8(+) cells in peripheral blood of 15 patients at the 3rd month after DC-CIK treatment (36.73% ± 12.51%) was dramatically higher than that before treatment (29.20% ± 8.34%, P < 0.05). The MRD rate was >0.1% in 5 patients before the treatment, and became lower than 0.1% 3 months after the treatment. During the transfusion of DC-CIK, side effects including fever, chills and hives appeared in 7 out of 22 (31.82%) cases but disappeared quickly after symptomatic treatments. There were no changes in electrocardiography and liver-renal functions after the treatment. MRD in children with AML can be eliminated by DC-CIK therapy which is safe and has fewer side effects.
		                        		
		                        		
		                        		
		                        			Adolescent
		                        			;
		                        		
		                        			Antineoplastic Agents
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Bone Marrow
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Child
		                        			;
		                        		
		                        			Child, Preschool
		                        			;
		                        		
		                        			Cytokine-Induced Killer Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			transplantation
		                        			;
		                        		
		                        			Dendritic Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			transplantation
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Immunotherapy, Adoptive
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Injections, Subcutaneous
		                        			;
		                        		
		                        			Interleukin-2
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Leukemia, Myeloid, Acute
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Neoplasm, Residual
		                        			;
		                        		
		                        			Primary Cell Culture
		                        			;
		                        		
		                        			Recurrence
		                        			;
		                        		
		                        			Remission Induction
		                        			;
		                        		
		                        			Treatment Outcome
		                        			
		                        		
		                        	
8.Heparin-treated dendritic cells promote Th0 to Th1 differentiation via the Toll-like receptor 3 in peripheral blood monocytes of patients with chronic hepatitis B.
Weihong SUN ; Xiaofang WEI ; Peng ZHAO ; Airong NIU ; Changyou LI ; Daiqing GAO
Chinese Journal of Hepatology 2015;23(9):658-662
OBJECTIVETo investigate the mechanisms underlying the ability ofheparin-treated dendritic cells (DCs) to promote Th0 to Th1 differentiation in chronic hepatitis B (CHB).
METHODSPeripheral blood mononuclear cells (PBMCs) were isolated from CHB patients and cultured in RPMI-1640 with recombinant GM-CSF and IL-4 with or without heparin to obtain DCs for study. The levels of Toll-like receptors (TLRs) on the DCs were measured using FACS and qPCR techniques.DC subsets with high expression of TLRs were selected for analysis of functional changes by treatment with the corresponding TLR-siRNA. The CD4+ T cell subpopulation was purified from peripheral blood by Dynal immunomagnetic beads, and then the production of IL-12 by DCs in the presence of poly(I:C) or R848 and ofIFN and IL-4 by Th cells co-cultured with DCs was evaluated by ELISA. The t-test was used for statistical analysis.
RESULTSTLR3 expression, and not expression of TLR 7 or TLR8,was significantly increased in heparin-treated DCs as compared to levels detected in the DCs without heparin treatment (t =2.849,P less than 0.05;t =3.027,P less than 0.05). The level of IL-12 produced by heparin-treated DCs stimulated with poly(I:C) was obviously higher than that produced by DCs without heparin treatment and stimulated with poly(I: C) (t =8.68,P less than 0.01) or with R848 (t =19.01,P less than 0.01). However, the IL-12 production by TLR3-siRNA transfected-DCs was significantly reduced (t =31.49, P less than 0.01).When Th cells from allogenic patients with CHB were co-cultured with the TLR3-siRNA transfectedDCs, the frequency ofCD4+ IFN+ cells was significantly reduced (1.64+/-0.57% vs.6.31+/-0.88%,P less than 0.01),as was the capability of Thl to generate IFNg (t =20.83,Pless than 0.01).
CONCLUSIONHeparin may have up-regulated the TLR3 expression level of DCs, and sequentially promoted Th0 to Th1 differentiation.
CD4-Positive T-Lymphocytes ; cytology ; Cell Differentiation ; Coculture Techniques ; Dendritic Cells ; cytology ; Granulocyte-Macrophage Colony-Stimulating Factor ; pharmacology ; Heparin ; pharmacology ; Hepatitis B, Chronic ; immunology ; Humans ; Interferon-gamma ; metabolism ; Interleukin-12 ; metabolism ; Interleukin-4 ; pharmacology ; Monocytes ; cytology ; Recombinant Proteins ; pharmacology ; Toll-Like Receptor 3 ; metabolism
9.Effect of bifunctional IL2-GMCSF in promoting dendritic cell activation in vitro in simulated tumor-induced immune suppression.
Qian WEN ; Wenjing XIONG ; Sudong LIU ; Chaoying ZHOU ; Li MA
Journal of Southern Medical University 2015;35(9):1239-1244
OBJECTIVETo test the effect of bifunctional molecule IL2-GMCSF in promoting the activation of dendritic cells (DCs) cultured in tumor conditioned medium.
METHODSWe prepared a tumor conditioned medium using mouse melanoma cell line B16F10 supplemented with IL2-GMCSF, GM-CSF, IL-2, or the combination of the latter two. After culturing mouse DC cell line DC2.4 in the conditioned medium for 24 h, the DCs were examined for phagocytosis, proliferation, maturation phenotype, cytokine secretion, and signal pathway activation.
RESULTSDC2.4 cells displayed characteristics of immature DCs. After cell culture in the conditioned medium, the cells showed enhanced phagocytosis but significantly suppressed cell proliferation activity. Culture in the conditioned medium also promoted DC cell maturation and secretion of macrophage-derived chemokine (MDC), but inhibited IL-12 secretion. Supplementation of the conditioned medium with IL2-GMCSF promoted phagocytosis, proliferation, maturation, and cytokine (including both IL-12 and MDC) secretion of DC2.4 cells. Compared with GM-CSF, IL2-GMCSF induced a higher level of NF-κB signal pathway activation but suppressed STAT3 activation.
CONCLUSIONCompared with GM-CSF, IL2-GMCSF can better promote DC activation in the context of tumor-induced immune suppression, and thus shows potentials in anti-tumor therapy.
Animals ; Cell Differentiation ; Cell Line, Tumor ; drug effects ; Cell Proliferation ; Chemokine CCL22 ; metabolism ; Culture Media, Conditioned ; chemistry ; Dendritic Cells ; cytology ; drug effects ; Gene Expression Regulation, Neoplastic ; Granulocyte-Macrophage Colony-Stimulating Factor ; pharmacology ; Immune Tolerance ; Interleukin-12 ; metabolism ; Interleukin-2 ; pharmacology ; Melanoma, Experimental ; pathology ; Mice ; NF-kappa B ; metabolism ; Phagocytosis ; STAT3 Transcription Factor ; metabolism ; Signal Transduction
10.Research progress in kidney dendritic cells.
Journal of Zhejiang University. Medical sciences 2015;44(5):584-588
		                        		
		                        			
		                        			Kidney dendritic cells(DC) play important roles in the pathogenesis of kidney diseases. Kidney DC presents anti-inflammatory effects in certain kidney diseases, sometimes presents pro-inflammation in other diseases, and sometimes their effects are changing in different stages of the disease, suggesting that the differentiation and function of kidney DC may be influenced by microenvironment. This article reviews the origin and distribution of kidney DC subsets and their roles in the pathogenesis of kidney diseases such as lupus nephritis and pyelonephritis, and the functional regulation of kidney DC by proximal tubule epithelial cells.
		                        		
		                        		
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Dendritic Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Epithelial Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Kidney
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Kidney Diseases
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Lupus Nephritis
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Pyelonephritis
		                        			;
		                        		
		                        			immunology
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail