1.Genetic counseling for hearing loss today.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):1-7
Genetic counseling for hearing loss today originated from decoding the genetic code of hereditary hearing loss, which serves as an effective strategy for preventing hearing loss and constitutes a crucial component of the diagnostic and therapeutic framework. This paper described the main principles and contents of genetic counseling for hearing loss, the key points of counseling across various genetic models and its application in tertiary prevention strategies targeting hearing impairment. The prospects of an AI-assisted genetic counseling decision system and the envisions of genetic counseling in preventing hereditary hearing loss were introduced. Genetic counseling for hearing loss today embodies the hallmark of a new era, which is inseparable from the advancements in science and technology, and will undoubtedly contribute to precise gene intervention!
Humans
;
Genetic Counseling
;
Deafness/genetics*
;
Hearing Loss/diagnosis*
;
Hearing Loss, Sensorineural/genetics*
3.Distribution characteristics and correlation analysis of GJB2 variation in patients with auditory neuropathy.
Yiming LI ; Hongyang WANG ; Danyang LI ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):23-29
Objective:To elucidate the correlation between the GJB2 gene and auditory neuropathy, aiming to provide valuable insights for genetic counseling of affected individuals and their families. Methods:The general information, audiological data(including pure tone audiometry, distorted otoacoustic emission, auditory brainstem response, electrocochlography), imaging data and genetic test data of 117 auditory neuropathy patients, and the patients with GJB2 gene mutation were screened out for the correlation analysis of auditory neuropathy. Results:Total of 16 patients were found to have GJB2 gene mutations, all of which were pathogenic or likely pathogenic.was Among them, one patient had compound heterozygous variants GJB2[c. 427C>T][c. 358_360del], exhibiting total deafness. One was GJB2[c. 299_300delAT][c. 35_36insG]compound heterozygous variants, the audiological findings were severe hearing loss.The remaining 14 patients with GJB2 gene variants exhibited typical auditory neuropathy. Conclusion:In this study, the relationship between GJB2 gene and auditory neuropathy was preliminarily analyzed,and explained the possible pathogenic mechanism of GJB2 gene variants that may be related to auditory neuropathy.
Humans
;
Connexins/genetics*
;
Connexin 26/genetics*
;
Hearing Loss, Central/genetics*
;
Deafness/genetics*
;
Mutation
4.Splicing mutations of GSDME cause late-onset non-syndromic hearing loss.
Danyang LI ; Hongyang WANG ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):30-37
Objective:To dentify the genetic and audiological characteristics of families affected by late-onset hearing loss due to GSDMEgene mutations, aiming to explore clinical characteristics and pathogenic mechanisms for providing genetic counseling and intervention guidance. Methods:Six families with late-onset hearing loss from the Chinese Deafness Genome Project were included. Audiological tests, including pure-tone audiometry, acoustic immittance, speech recognition scores, auditory brainstem response, and distortion product otoacoustic emission, were applied to evaluate the hearing levels of patients. Combining with medical history and physical examination to analyze the phenotypic differences between the probands and their family members. Next-generation sequencing was used to identify pathogenic genes in probands, and validations were performed on their relatives by Sanger sequencing. Pathogenicity analysis was performed according to the American College of Medical Genetics and Genomics Guidelines. Meanwhile, the pathogenic mechanisms of GSDME-related hearing loss were explored combining with domestic and international research progress. Results:Among the six families with late-onset hearing loss, a total of 30 individuals performed hearing loss. The onset of hearing loss in these families ranged from 10 to 50 years(mean age: 27.88±9.74 years). In the study, four splicing mutations of the GSDME were identified, including two novel variants: c. 991-7C>G and c. 1183+1G>T. Significantly, the c. 991-7C>G was a de novo variant. The others were previously reported variants: c. 991-1G>C and c. 991-15_991-13del, the latter was identified in three families. Genotype-phenotype correlation analysis revealed that probands with the c. 991-7C>G and c. 1183+1G>T performed a predominantly high-frequency hearing loss. The three families carrying the same mutation exhibited varying degrees of hearing loss, with an annual rate of hearing deterioration exceeding 0.94 dB HL/year. Furthermore, follow-up of interventions showed that four of six probands received intervention(66.67%), but the results of intervention varied. Conclusion:The study analyzed six families with late-onset non-syndromic hearing loss linked to GSDME mutations, identifying four splicing variants. Notably, c. 991-7C>G is the first reported de novo variant of GSDME globally. Audiological analysis revealed that the age of onset generally exceeded 10 years,with variable effectiveness of interventions.
Humans
;
Adolescent
;
Young Adult
;
Adult
;
Child
;
Hearing Loss, Sensorineural/diagnosis*
;
Deafness/genetics*
;
Mutation
;
Hearing Loss/genetics*
;
Pedigree
5.Genetic and phenotypic analysis of MYO15A rare variants associated with autosomal recessive hearing loss.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):38-43
Objective:To analyze the phenotype and genotype characteristics of autosomal recessive hearing loss caused by MYO15A gene variants, and to provide genetic diagnosis and genetic counseling for patients and their families. Methods:Identification of MYO15A gene variants by next generation sequencing in two sporadic cases of hearing loss at Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. The sequence variants were verified by Sanger sequencing.The pathogenicity of these variants was determined according to the American College of Medical Genetics and Genomics(ACMG) variant classification guidelines, in conjuction with clinical data. Results:The probands of the two families have bilateral,severe or complete hearing loss.Four variants of MYO15A were identified, including one pathogenic variant that has been reported, two likely pathogenic variants,and one splicing variant of uncertain significance. Patient I carries c. 3524dupA(p. Ser1176Valfs*14), a reported pathogenic variant, and a splicing variant c. 10082+3G>A of uncertain significance according to the ACMG guidelines. Patient I was treated with bilateral hearing aids with satisfactory effect, demonstrated average hearing thresholds of 37.5 dB in the right ear and 33.75 dB in the left ear. Patient Ⅱ carries c. 7441_7442del(p. Leu2481Glufs*86) and c. 10250_10252del(p. Ser3417del),a pair of as likely pathogenic variants according to the ACMG guidelines. Patient Ⅱ, who underwent right cochlear implantation eight years ago, achieved scores of 9 on the Categorical Auditory Performance-Ⅱ(CAP-Ⅱ) and 5 on the Speech Intelligibility Rating(SIR). Conclusion:This study's discovery of the rare c. 7441_7442del variant and the splicing variant c. 10082+3G>A in the MYO15A gene is closely associated with autosomal recessive hearing loss, expanding the MYO15A variant spectrum. Additionally, the pathogenicity assessment of the splicing variant facilitates classification of splicing variations.
Humans
;
Pedigree
;
China
;
Deafness/genetics*
;
Hearing Loss/genetics*
;
Phenotype
;
Hearing Loss, Sensorineural/genetics*
;
Mutation
;
Myosins/genetics*
6.Long-term auditory monitoring in children with Alport syndrome based on different degrees of renal injury.
Lining GUO ; Wei LIU ; Min CHEN ; Jiatong XU ; Ning MA ; Xiao ZHANG ; Qingchuan DUAN ; Shanshan LIU ; Xiaoxu WANG ; Junsong ZHEN ; Xin NI ; Jie ZHANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):44-49
Objective:To investigate long-term auditory changes and characteristics of Alport syndrome(AS) patients with different degrees of renal injury. Methods:Retrospectively analyzing clinical data of patients diagnosed AS from January 2007 to September 2022, including renal pathology, genetic detection and hearing examination. A long-term follow-up focusing on hearing and renal function was conducted. Results:This study included 70 AS patients, of which 33(25 males, 8 females, aged 3.4-27.8 years) were followed up, resulting in a loss rate of 52.9%.The follow-up period ranged from 1.1to 15.8 years, with 16 patients followed-up for over 10 years. During the follow-up, 10 patients presenting with hearing abnormalities at the time of diagnosis of AS had progressive hearing loss, and 3 patients with new hearing abnormalities were followed up, which appeared at 5-6 years of disease course. All of which were sensorineural deafness. While only 3 patients with hearing abnormalities among 13 patients received hearing aid intervention. Of these patients,7 developed end-stage renal disease(ESRD), predominantly males (6/7). The rate of long-term hearing loss was significantly different between ESRD group and non-ESRD group(P=0.013). There was no correlation between the progression of renal disease and long-term hearing level(P>0.05). kidney biopsies from 28 patients revealed varying degrees of podocyte lesion and uneven thickness of basement membrane. The severity of podocyte lesion was correlated with the rate of long-term hearing loss(P=0.048), and there was no correlation with the severity of hearing loss(P>0.05). Among 11 cases, theCOL4A5mutationwas most common (8 out of 11), but there was no significant correlation between the mutation type and hearing phenotype(P>0.05). Conclusion:AS patients exhibit progressive hearing loss with significant heterogeneity over the long-term.. THearing loss is more likely to occur 5-6 years into the disease course. Hearing abnormalities are closely related to renal disease status, kidney tissue pathology, and gene mutations, emphasizing the need for vigilant long-term hearing follow-up and early intervention.
Male
;
Child
;
Female
;
Humans
;
Nephritis, Hereditary/pathology*
;
Retrospective Studies
;
Kidney
;
Deafness
;
Hearing Loss/genetics*
;
Kidney Failure, Chronic/pathology*
;
Mutation
7.Research progress on hereditary endocrine and metabolic diseases associated with sensorineural hearing loss.
Fang CHEN ; Qinying ZHANG ; Qiujing ZHANG ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):63-69
Hereditary endocrine and metabolic diseases , caused by genetic factors, exhibit complex and diverse symptoms, including the possibility of concurrent sensorineural deafness. Currently, there is a limited clinical understanding of hereditary endocrine and metabolic diseases that manifest with deafness, the pathogenesis remains unclear,and there is a lack of effective diagnostic and treatment methods. This article summarizes the research progress of hereditary endocrine and metabolic diseases complicated with deafness from the pathogenesis, clinical phenotype, diagnosis and treatment. Understanding the current research progress and integrating genetic analysis into clinical practice are crucial for accurate diagnosis and treatment, evaluating clinical efficacy, and providing effective genetic counseling for these diseases.
Humans
;
Deafness/genetics*
;
Hearing Loss, Sensorineural/diagnosis*
;
Phenotype
;
Metabolic Diseases/genetics*
;
Genetic Counseling
8.A case of sudden hearing loss combined with familial hyperlipidemia.
Hui ZHONG ; Xiaonan WU ; Jing GUAN ; Dayong WANG ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):70-72
Hyperlipidemia is characterized by elevated levels of blood lipids. The clinical manifestations are mainly atherosclerosis caused by the deposition of lipids in the vascular endothelium. The link between abnormal lipid metabolism and sudden hearing loss remains unclear. This article presents a case study of sudden hearing loss accompanied by familial hyperlipidemia. Pure tone audiometry indicated intermediate frequency hearing loss in one ear. Laboratory tests showed abnormal lipid metabolism, and genetic examination identified a heterozygous mutation in theAPOA5 gene. Diagnosis: Sudden hearing loss; hypercholesterolemia. The patient responded well to pharmacological treatment. This paper aims to analyze and discuss thepotential connection between abnormal lipid metabolism and sudden hearing loss.
Humans
;
Audiometry, Pure-Tone
;
Deafness/complications*
;
Hearing Loss, Sensorineural/diagnosis*
;
Hearing Loss, Sudden/diagnosis*
;
Hyperlipidemias/complications*
;
Lipids
9.Association of glycemic index using HbA1c and sensorineural hearing loss in diabetes mellitus type 2 patients: A systematic review and meta-analysis
Mark Randell R. Quines, MD ; Cristopher Ed C. Gloria, MD
Philippine Journal of Otolaryngology Head and Neck Surgery 2023;38(1):10-16
Objective:
To systematically review the available evidence on the association of HBA1c levels and development of sensorineural hearing loss and to quantitatively analyze the available data on HBA1c levels in patients with type 2 diabetes mellitus and sensorineural hearing loss to determine an HbA1c level that may be associated with the risk of having sensorineural hearing loss.
Methods:
Design: Systematic Review and Meta-analysis
Eligibility Criteria: Cross-sectional studies, or cohort studies which were limited to English language that investigated the correlation of glycemic index using HBA1c and sensorineural hearing loss among adult type 2 diabetic patients which were done from January 2010 to December 2021. Studies with no published outcome, incomplete data or that were ongoing as of August 1, 2022 were also excluded.
Information Sources: MEDLINE (through PubMed), Cochrane Library, Scopus, Embase (through OVID@journal), Directory of Open Access Journals (DOAJ), Google Scholar and HERDIN Plus
Risk of Bias: Risk of Bias was assessed using the Guidelines for Cochrane Collaboration
Synthesis of Results: Results were presented using forest plots for representation.
Results:
A total of 8 studies were reviewed with 2,103 participants in all. Six articles compared hearing loss incidence between diabetic and non-diabetic patients. Overall, there were a total of 881 diabetic patients and 1222 non-diabetic patients. There was a significantly lower incidence of sensorineural hearing loss in non-diabetic patients with a risk ratio of 1.89, 95% CI [1.65, 2.16]. Three articles compared the HbA1c levels of diabetic patients with or without sensorineural hearing loss. Diabetic patients without sensorineural hearing loss had significantly lower HbA1c levels compared to those with sensorineural hearing loss with mean difference of 1.04, 95%CI [0.82, 1.25].
Conclusion
In conclusion, this meta-analysis showed a higher prevalence rate of sensorineural hearing loss among patients with diabetes mellitus compared to non-diabetic patients. Moreover, poor glycemic control among diabetic patients with a glycemic index based on HbA1c of more than 8.3 (6.97-9.6) is associated with sensorineural hearing loss.
diabetes mellitus
;
glycemic index
;
sensorineural hearing loss
;
pure tone audiometry
;
deafness
10.Intervention effects of bone conduction hearing aids in patients with single-sided deafness and asymmetric hearing loss.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2023;37(11):927-933
The incidence of single-sided deafness(SSD) is increasing year by year. Due to the hearing defects of one ear, the ability of sound localization, speech recognition in noise, and quality of life of patients with single-sided deafness will be affected to varying degrees. This article reviews the intervention effects of different types of bone conduction hearing aids in patients with single-sided deafness and asymmetric hearing loss, and the differences of intervention effects between bone conduction hearing aids, contralateral routing of signal(CROS) aids, and cochlea implant(CI), to provide a reference for the auditory intervention and clinical treatment of single-sided deafness and asymmetric hearing loss.
Humans
;
Quality of Life
;
Bone Conduction
;
Hearing Loss, Unilateral/therapy*
;
Speech Perception
;
Hearing Aids
;
Hearing Loss
;
Sound Localization
;
Deafness
;
Treatment Outcome


Result Analysis
Print
Save
E-mail