1.Machine Learning-Based Computed Tomography-Derived Fractional Flow Reserve Predicts Need for Coronary Revascularisation Prior to Transcatheter Aortic Valve Implantation
Kai Dick David LEUNG ; Pan Pan NG ; Boris Chun Kei CHOW ; Keith Wan Hang CHIU ; Neeraj Ramesh MAHBOOBANI ; Yuet-Wong CHENG ; Eric Chi Yuen WONG ; Alan Ka Chun CHAN ; Augus Shing Fung CHUI ; Michael Kang-Yin LEE ; Jonan Chun Yin LEE
Cardiovascular Imaging Asia 2025;9(1):2-8
Objective:
Patients with severe symptomatic aortic stenosis are assessed for coronary artery disease (CAD) prior to transcatheter aortic valve implantation (TAVI) with treatment implications. Invasive coronary angiography (ICA) is the recommended modality but is associated with peri-procedural complications. Integrating machine learning (ML)-based computed tomography-derived fractional flow reserve (CT-FFR) into existing TAVI-planning CT protocol may aid exclusion of significant CAD and thus avoiding ICA in selected patients.
Materials and Methods:
A single-center, retrospective study was conducted, 41 TAVI candidates with both TAVI-planning CT and ICA performed were analyzed. CT datasets were evaluated by a ML-based CT-FFR software. Beta-blocker and nitroglycerin were not administered in these patients. The primary outcome was to identify significant CAD. The diagnostic performance of CT-FFR was compared against ICA.
Results:
On per-patient level, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and diagnostic accuracy were 89%, 94%, 80%, 97% and 93%, respectively. On per-vessel level, the sensitivity, specificity, PPV, NPV and diagnostic accuracy were 75%, 94%, 67%, 96% and 92%, respectively. The area under the receiver operative characteristics curve per individual coronary vessels yielded overall 0.90 (95% confidence interval 85%–95%). ICA may be avoided in up to 80% of patients if CT-FFR results were negative.
Conclusion
ML-based CT-FFR can provide accurate screening capabilities for significant CAD thus avoiding ICA. Its integration to existing TAVI-planning CT is feasible with the potential of improving the safety and efficiency of pre-TAVI CAD assessment.
2.Interdisciplinary and regional cooperation towards Head and Neck Cancer Interventional Radiotherapy (Brachytherapy) implementation in Southeast Asia
Vito Filbert Jayalie ; David Johnson ; Sudibio Sudibio ; Rudiyo Rudiyo ; Juli Jamnasi ; Hendriyo Hendriyo ; Jose Roel Resubal ; Dan Joseph Manlapaz ; Marjorie Cua ; Janell Marie Genson ; Cesar Vincent Villafuerte III ; Jennifer Alzaga ; Evelyn Dancel ; Stellar Marie Cabrera ; Maureen Bojador ; Ashwini Budrukkar ; Michael Benedict Mejia ; Adrian Fernando ; Warren Bacorro
Journal of Medicine University of Santo Tomas 2024;8(1):1381-1389
We review the evolution of Brachytherapy to interventional radiotherapy and its current and potential roles in HNC management, and the requirements and challenges towards its effective and sustainable implementation in SEA.
Brachytherapy
;
Radiotherapy
7.A Prospective 1-Year Follow-Up of Glycemic Status and C-Peptide Levels of COVID-19 Survivors with Dysglycemia in Acute COVID-19 Infection
David Tak Wai LUI ; Chi Ho LEE ; Ying WONG ; Carol Ho Yi FONG ; Kimberly Hang TSOI ; Yu Cho WOO ; Kathryn Choon Beng TAN
Diabetes & Metabolism Journal 2024;48(4):763-770
Background:
We evaluated changes in glycemic status, over 1 year, of coronavirus disease 2019 (COVID-19) survivors with dysglycemia in acute COVID-19.
Methods:
COVID-19 survivors who had dysglycemia (defined by glycosylated hemoglobin [HbA1c] 5.7% to 6.4% or random glucose ≥10.0 mmol/L) in acute COVID-19 were recruited from a major COVID-19 treatment center from September to October 2020. Matched non-COVID controls were recruited from community. The 75-g oral glucose tolerance test (OGTT) were performed at baseline (6 weeks after acute COVID-19) and 1 year after acute COVID-19, with HbA1c, insulin and C-peptide measurements. Progression in glycemic status was defined by progression from normoglycemia to prediabetes/diabetes, or prediabetes to diabetes.
Results:
Fifty-two COVID-19 survivors were recruited. Compared with non-COVID controls, they had higher C-peptide (P< 0.001) and trend towards higher homeostasis model assessment of insulin resistance (P=0.065). Forty-three COVID-19 survivors attended 1-year reassessment. HbA1c increased from 5.5%±0.3% to 5.7%±0.2% (P<0.001), with increases in glucose on OGTT at fasting (P=0.089), 30-minute (P=0.126), 1-hour (P=0.014), and 2-hour (P=0.165). At baseline, 19 subjects had normoglycemia, 23 had prediabetes, and one had diabetes. Over 1 year, 10 subjects (23.8%; of 42 non-diabetes subjects at baseline) had progression in glycemic status. C-peptide levels remained unchanged (P=0.835). Matsuda index decreased (P=0.007) and there was a trend of body mass index increase from 24.4±2.7 kg/m2 to 25.6±5.2 (P=0.083). Subjects with progression in glycemic status had more severe COVID-19 illness than non-progressors (P=0.030). Reassessment was not performed in the control group.
Conclusion
Subjects who had dysglycemia in acute COVID-19 were characterized by insulin resistance. Over 1 year, a quarter had progression in glycemic status, especially those with more severe COVID-19. Importantly, there was no significant deterioration in insulin secretory capacity.
9.Current evidence for prognostic benefit of intravascular imaging-guided percutaneous coronary intervention in chronic total occlusion intervention
David HONG ; Sung Eun KIM ; Seung Hun LEE ; Seung-Jae LEE ; Jong-Young LEE ; Sang Min KIM ; Sang Yeub LEE ; Woochan KWON ; Ki Hong CHOI ; Taek Kyu PARK ; Jeong Hoon YANG ; Young Bin SONG ; Seung-Hyuk CHOI ; Hyeon-Cheol GWON ; Joo-Yong HAHN ; Joo Myung LEE ;
The Korean Journal of Internal Medicine 2024;39(5):702-716
Although percutaneous coronary intervention (PCI) for chronic total occlusion (CTO) has been increasing in recent years, CTO PCI is still one of the most challenging procedures with relatively higher rates of procedural complications and adverse clinical events after PCI. Due to the innate limitations of invasive coronary angiography, intravascular imaging (IVI) has been used as an adjunctive tool to complement PCI, especially in complex coronary artery disease. Considering the complexity of CTO lesions, the role of IVI is particularly important in CTO intervention. IVI has been a useful adjunctive tool in every step of CTO PCI including assisted wire crossing, confirmation of wire location within CTO segment, and stent optimization. The meticulous use of IVI has been one of the greatest contributors to recent progress of CTO PCI. Nevertheless, studies evaluating the role of IVI during CTO PCI are limited. The current review provides a comprehensive overview of the mechanistic advantages of IVI in CTO PCI, summarizes previous studies and trials, and presents future perspective of IVI in CTO PCI.


Result Analysis
Print
Save
E-mail