1.Interpretation and thoughts on the formulation and revision of the standards for exogenous harmful residues in traditional Chinese medicinal materials in the Chinese Pharmacopoeia 2025 Edition
WANG Ying ; SHEN Mingrui ; LIU Yuanxi ; ZUO Tiantian ; WANG Dandan ; HE Yi ; CHENG Xianlong ; JIN Hongyu ; LIU Yongli ; WEI Feng ; MA Shuangcheng
Drug Standards of China 2025;26(1):083-092
As people’s attention to health continues to increase, the market demand for traditional Chinese medicine (TCM) is growing steadily. The quality and safety of Chinese medicinal materials have attracted unprecedented social attention. In particular, the issue of exogenous harmful residue pollution in TCM has become a hot topic of concern for both regulatory authorities and society. The Chinese Pharmacopoeia 2025 Edition further refines the detection methods and limit standards for exogenous harmful residues in TCM. This not only reflects China’s high-level emphasis on the quality and safety of TCM but also demonstrates the continuous progress made by China in the field of TCM safety supervision. Basis on this study, by systematically reviewing the development history of the detection standards for exogenous harmful residues in TCM and analyzing the revisions and updates of these detection standards in the Chinese Pharmacopoeia 2025 Edition, deeply explores the key points of the changes in the monitoring standards for exogenous harmful residues in TCM in the Chinese Pharmacopoeia 2025 Edition. Moreover, it interprets the future development directions of the detection of exogenous residues in TCM, aiming to provide a reference for the formulation of TCM safety supervision policies.
2.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
3.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
4.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
5.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
6.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
7.A Ten-Year Comparative Study on Ethical Cognition of Experimental Animals among Medical Students in a University
Xuan LEI ; Xiangyi MING ; Han YANG ; Zixu CHEN ; Dandan FENG ; Jing DENG ; Ziqiang LUO
Chinese Medical Ethics 2024;35(5):533-537
The study was carried out to understand the changes in the ethical cognition status of laboratory animals and the effectiveness of laboratory animal ethics education among medical students in Xiangya School of Medicine of Central South University (CSU), and provide new enlightenment for further strengthening the ethical education of laboratory animals. In the study, the same self-compiled questionnaire was used to investigate the ethical cognition of experimental animals among medical students in Xiangya School of Medicine of CSU in 2011 and 2021, and 359 and 363 questionnaires were collected respectively. Through comparative analysis of the questionnaire results before and after ten years, it was found that medical students’ animal experiment operation and attitudes towards laboratory animals, cognition of experimental animal ethics knowledge and their attitude to animal experiment ethics education were significantly improved. It showed that the state of experimental animal ethics cognition among medical students in Xiangya School of Medicine of CSU had improved significantly in recent 10 years, but the cognition of experimental animal ethics knowledge was higher than the actual behavior of caring for experimental animals, and there was the phenomenon of "separation of knowledge and action". The ethics education of experimental animals needs to pay more attention to the development of students’ behavior of caring for experimental animals.
8.Oral mechanomedicine
Hui ZHANG ; Ye LI ; Dandan PEI ; Feng XU ; Ang LI
Chinese Journal of Stomatology 2024;59(12):1197-1205
In the past decades, we have witnessed considerable advancements in the diagnosis and treatment of oral diseases. However, there still remain significant challenges, such as the regeneration of functional oral tissues. Therefore, new approaches are urgently needed. The oral is a complex biomechanical system where mechanics plays an essential role in the development and functioning of tissues and organs, as well as in the diagnosis and treatment of diseases. Thus, the integration of mechanics into oral disease diagnostics and therapeutics warrants greater attention. To date, the potential of mechanics in oral healthcare has not been sufficiently explored. Recent advancements in biomechanics and mechanobiology within oral medicine have underscored the growing relevance of mechanical theories, analytical methods, innovative technologies, and novel biomaterials in disease diagnosis and treatment. Therefore, this paper proposes the concept of "Oral Mechanomedicine" by summarizing research progress both domestically and internationally. It systematically describes the influence and mechanisms of mechanics in the etiology, progression, diagnosis, and treatment of oral diseases across four domains, i.e., oral biomechanics, oral mechanobiology, oral mechanodiagnostics, and oral mechanotherapy. Our aim is to enable more precise diagnoses, effective treatments, and comprehensive oral disease management. Additionally, this paper offers insights into the future trajectory of Oral Mechanomedicine, proposing new theoretical viewpoints and practical approaches to advance the field of oral medicine.
9.Auxiliary diagnostic value of IMA and CK index in acute ischemic stroke
Yuping FU ; Feng FU ; Ya ZHU ; Zhenshuai LIAN ; Sha YAN ; Dandan LI ; Zhi'an HE
International Journal of Laboratory Medicine 2024;45(22):2716-2720
Objective To evaluate the diagnostic value of ischemia-modified albumin(IMA)and the crea-tine kinase(CK)index in acute ischemic stroke(AIS).Methods According to the inclusion and exclusion cri-teria,totally 149 newly diagnosed and untreated AIS patients hospitalized in Henan Provincial People's Hospi-tal from October 2021 to October 2022 were selected as the AIS group.Additionally,156 healthy people who underwent the physical examination during the same period were selected as the control group.Activity levels of IMA,CK,creatine kinase-MB(CK-MB),lactate dehydrogenase(LDH)and hydroxybutyrate-dehydrogen-ase(HBDH)were measured using the Abbott C1600 biochemical analyzer,and the CK index(ratio of CK-MB to CK)was calculated.Relative risk factors were analyzed,receiver operating characteristics(ROC)curve was constructed,data were analyzed using SPSS27.0.1,graphs were plotted using GraphPad Prism 9.4.1,and differences in area under the curve(AUC)were compared using MedCalc(version 20.0.22).Results The AIS group exhibited significantly higher levels of IMA,CK-MB,and the CK index,and significantly lower levels of CK compared to the control group(all P<0.05).Univariate logistic regression analysis revealed that both IMA and the CK index were risk factors for AIS(both P<0.001).After adjusting for gender and age in a multivariate binary logistic regression analysis,IMA emerged as an independent risk factor for AIS(OR=1.901,95%CI:1.649-2.190,P<0.001).IMA,CK-MB and CK index in the AIS group were significantly higher than those in the control group,and CK levels were significantly lower than those in the control group,and the differences were statistically significant(P<0.05).Univariate Logistic regression analysis showed that IMA and CK index were risk factors for AIS(P<0.001).After adjusting for sex and age in multivariate binary Logistic regression analysis,IMA was an independent risk factor for AIS(OR=1.901,95%CI:1.649-2.190,P<0.001).The ROC curve demonstrated that AUC,the sensitivity and the specificity of sin-gle detection for IMA were 0.922,81.2%,and 90.4%,respectively.There was no significant difference compared to combined detection using IMA+CK index or IMA+CK index+CK(all P>0.05).Conclusion IMA is an independent risk factor for AIS,which has strong diagnostic value and is worthy of clinical application.
10.Proteomic analysis of aqueous humor in patients with exfoliation syndrome
Zhao XU ; Liming WANG ; Qiang FENG ; Dandan ZHANG ; Tuerdimaimaiti AYIGUZAILI ; Ruru GUO ; Lijie DONG ; Ruihua WEI ; Aihua LIU
Chinese Journal of Experimental Ophthalmology 2024;42(6):512-519
Objective:To analyze the differential expressions of proteins in aqueous humor in patients with exfoliation syndrome (XFS).Methods:A total of 20 patients were enrolled in the Department of Ophthalmology, People's Hospital of Hotan District from June 2020 to January 2021, including 10 patients with age-related cataract and 10 XFS patients combined with cataract, which were classified as cataract group and XFS group, respectively.A total of 50 to 100 μl aqueous humor was obtained in the middle of the anterior chamber through the intraoperative phacoemulsification channel.The proteins extracted from aqueous humor were analyzed by label-free quantitative proteomics technology.The cataract group was set as the control group, and the differentially expressed proteins (DEPs) in XFS group were screened according to P<0.05 and fold change >1.5.Gene ontology (GO) function analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis were used to explore the function and regulatory signaling pathways of DEPs in the XFS group.This study adhered to the Declaration of Helsinki.The study protocol was approved by the Ethics Committee of Tianjin Medical University Eye Hospital (No.2020KY[L]-21).Written informed consent was obtained from each subject. Results:In comparison with the cataract group, 25 DEPs were identified in the XFS group, primarily involved in cell adhesion, receptor, hydrolase, and molecular transport.Specifically, there were 14 down-regulated proteins including complement factor H-related protein 1 (CFHR1), endoplasmic reticulum chaperone BiP (HSPA5), biglycan (BGN), FRAS1-related extracellular matrix protein 2 (FREM2), hemoglobin subunit delta (HBD), hemoglobin subunit gamma-1 (HBG1), lysosomal thioesterase PPT2 (PPT2) etc., and 11 up-regulated proteins including latent-transforming growth factor beta-binding protein 2 (LTBP2), very low-density lipoprotein receptor (VLDLR), laminin subunit alpha-2 (LAMA2), coagulation factor Ⅸ (F9).Among them, FREM2 was the most significantly differentially expressed protein in XFS group with consistent expression levels across individual samples.GO analysis revealed that these DEPs mainly localized to the extracellular matrix of collagen, bound globin-hemoglobin complex, plasma lipoprotein particles and lysosomes.Molecular functions and biological processes showed that HBD and HBG1 were involved in cellular detoxification, PPT2 in hydrolase activity, and BGN and LTBP2 in glycosaminoglycan binding.KEGG signaling pathway analysis indicated that CFHR1 and F9 were associated with complement and coagulation cascade pathways, and FREM2 and LAMA2 were linked to the extracellular matrix interaction pathway.Conclusions:Disease progression of XFS may be associated with changes in extracellular matrix proteins, disruption of the blood-aqueous humor barrier, and potential inflammatory responses.The significant down-regulation of FREM2 protein may be a potential biomarker for XFS.

Result Analysis
Print
Save
E-mail