1.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
2.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.The relationship between activities of daily living and mental health in community elderly people and the mediating role of sleep quality
Heng-Yi ZHOU ; Jing LI ; Dan-Hua DAI ; Yang LI ; Bin ZHANG ; Rong DU ; Rui-Long WU ; Jia-Yan JIANG ; Yuan-Man WEI ; Jing-Rong GAO ; Qi ZHAO
Fudan University Journal of Medical Sciences 2024;51(2):143-150
Objective To explore the relationship and internal path between activities of daily living(ADL),sleep quality and mental health of community elderly people in Shanghai.Methods A questionnaire survey was conducted among community residents aged 60 years and older seeing doctors in community health care center of five streets in Shanghai during Sept to Dec,2021 using convenience sampling.Activities of Daily Living(ADL),Pittsburgh Sleep Quality Index(PSQI)and 10-item Kessler Psychological Distress Scale(K10)were adopted in the survey.Single factor analysis,correlation analysis and multiple linear regression were used to analyze the data.The effect relationship between the variables was tested using Bootstrap's mediated effects test.Results A total of 1 864 participants were included in the study.The average score was 15.53±4.47 for ADL,5.60±3.71 for PSQI and 15.50±6.28 for K10.The rate of ADL impairment,poor sleep quality,poor and very poor mental health of the elderly were 23.6%,27.3%,11.9%and 4.9%,respectively.ADL and sleep quality were all positively correlated with mental health(r=0.321,P<0.001;r=0.466,P<0.001);ADL was positively correlated with sleep quality(r=0.294,P<0.001).Multiple linear results of factors influencing mental health showed that ADL(β= 0.457,95%CI:0.341-0.573),sleep quality(β =0.667,95%CI:0.598-0.737)and mental health were positively correlated(P<0.001).Sleep quality partially mediated the relationship between ADL and mental health(95%CI:0.078-0.124)with an effect size of 33.0%.Conclusion Sleep quality is a mediator between ADL and mental health among community elderly people.Improving ADL and sleep quality may improve mental health in the population.
7.Efficacy of metoprolol versus ivabradine in treatment of POTS in elderly patients after COVID-19 infection
Xiaonan GUAN ; Wenting LIU ; Wen HUANG ; Guiling MA ; Mei HU ; Dan QI ; Min ZONG ; Hua ZHAO ; Fei'ou LI ; Jianjun ZHANG
Chinese Journal of Geriatric Heart Brain and Vessel Diseases 2024;26(3):280-283
Objective To explore the difference in efficacy of metoprolol versus ivabradine in the treatment of postural orthostatic tachycardia syndrome(POTS)in the elderly after COVID-19 infection.Methods A total of 110 patients diagnosed with POTS at our department from Decem-ber 1,2022 to January 31,2023 were included.According to their drug regimen,they were divided into metoprolol group(62 patients)and ivabradine group(48 patients).On the 28th day of out-patient follow-up,the resting heart rate,heart rate of 10 min of standing,symptom disappearance rate,hospitalization rate,and mortality rate were compared between the two groups.Results On the 28th day of treatment,the resting heart rate and postural heart rate for 10 min were decreased in both groups when compared with the levels at initial diagnosis(P<0.01).And there were no significant differences in the two types of heart rate between the two groups on the 28th day(71.0±7.0 vs 72.1±7.0,P=0.401;76.5±7.2 vs 77.4±7.6,P=0.573).No obvious differences were observed between the two groups in symptom disappearance rate,hospitalization rate,or mortality rate(88.7%vs 89.6%,3.2%vs2.1%,0%vs 0%,P>0.05).Conclusion Metoprolol and ivabradine can effectively treat POTS in the elderly patients after COVID-19 infection.
8.The association between body mass index and in-hospital major adverse cardiovascular and cerebral events in patients with acute coronary syndrome
Qing ZHOU ; Dan ZHU ; Yiting WANG ; Wenyue DONG ; Jie YANG ; Jun WEN ; Jun LIU ; Na YANG ; Dong ZHAO ; Xinwei HUA ; Yida TANG
Chinese Journal of Cardiology 2024;52(1):42-48
Objective:To assess the association between body mass index (BMI) and major adverse cardiovascular and cerebrovascular events (MACCE) among patients with acute coronary syndrome (ACS).Methods:This was a multicenter prospective cohort study, which was based on the Improving Care for Cardiovascular Disease in China (CCC) project. The hospitalized patients with ACS aged between 18 and 80 years, registered in CCC project from November 1, 2014 to December 31, 2019 were included. The included patients were categorized into four groups based on their BMI at the time of admission: underweight (BMI<18.5 kg/m 2), normal weight (BMI between 18.5 and 24.9 kg/m 2), overweight (BMI between 25.0 and 29.9 kg/m 2), and obese (BMI≥30.0 kg/m 2). Multivariate logistic regression models was used to analyze the relationship between BMI and the risk of in-hospital MACCE. Results:A total of 71 681 ACS inpatients were included in the study. The age was (63.4±14.7) years, and 26.5% (18 979/71 681) were female. And the incidence of MACCE for the underweight, normal weight, overweight, and obese groups were 14.9% (322/2 154), 9.5% (3 997/41 960), 7.9% (1 908/24 140) and 7.0% (240/3 427), respectively ( P<0.001). Multivariate logistic regression analysis showed a higher incidence of MACCE in the underweight group compared to the normal weight group ( OR=1.30, 95% CI 1.13-1.49, P<0.001), while the overweight and obese groups exhibited no statistically significant difference in the incidence of MACCE compared to the normal weight group (both P>0.05). Conclusion:ACS patients with BMI below normal have a higher risk of in-hospital MACCE, suggesting that BMI may be an indicator for evaluating short-term prognosis in ACS patients.

Result Analysis
Print
Save
E-mail