1.A Precise and Portable Detection System for Infectious Pathogens Based on CRISPR/Cas Technology
Yi-Chen LIU ; Ru-Jian ZHAO ; Bai-Yang LYU ; De-Feng SONG ; Yi-Dan TANG ; Yan-Fang JIANG ; Bing-Ling LI
Chinese Journal of Analytical Chemistry 2024;52(2):187-197
Nucleic acid-based molecular diagnostic methods are considered the gold standard for detecting infectious pathogens.However,when applied to portable or on-site rapid diagnostics,they still face various limitations and challenges,such as poor specificity,cumbersome operation,and portability difficulties.The CRISPR(Clustered regularly interspaced short palindromic repeats)/CRISPR-associated protein(Cas)-fluorescence detection method holds the potential to significantly enhance the specificity and signal-to-noise ratio of nucleic acid detection.In this study,we developed a portable grayscale reader detection system based on loop-mediated isothermal amplification(LAMP)-CRISPR/Cas.On one hand,in the presence of CRISPR RNA(crRNA),the CRISPR/Cas12a system was employed to achieve precise fluorescent detection of self-designed LAMP amplification reactions for influenza A and influenza B viruses.This further validated the high selectivity and versatility of the CRISPR/Cas system.On the other hand,the accompanying independently developed portable grayscale reader allowed for low-cost collection of fluorescence signals and high-reliability visual interpretation.At the end of the detection process,it directly provided positive or negative results.Practical sample analyses using this detection system have verified its reliability and utility,demonstrating that this system can achieve highly sensitive and highly specific portable analysis of influenza viruses.
2.Early experience with mechanical hemodynamic support for catheter ablation of malignant ventricular tachycardia
Mengmeng LI ; Yang YANG ; Deyong LONG ; Chenxi JIANG ; Ribo TANG ; Caihua SANG ; Wei WANG ; Xin ZHAO ; Xueyuan GUO ; Songnan LI ; Changyi LI ; Man NING ; Changqi JIA ; Li FENG ; Dan WEN ; Hui ZHU ; Yuexin JIANG ; Fang LIU ; Tong LIU ; Jianzeng DONG ; Changsheng MA
Chinese Journal of Cardiology 2024;52(7):768-776
Objective:To explore the role of mechanical hemodynamic support (MHS) in mapping and catheter ablation of patients with hemodynamically unstable ventricular tachycardia (VT), report single-center experience in a cohort of consecutive patients receiving VT ablation during MHS therapy, and provide evidence-based medical evidence for clinical practice.Methods:This was a retrospective cohort study. Patients with hemodynamically unstable VT who underwent catheter ablation with MHS at Beijing Anzhen Hospital, Capital Medical University between August 2021 and December 2023 were included. Patients were divided into rescue group and preventive group according to the purpose of treatment. Their demographic data, periprocedural details, and clinical outcomes were collected and analyzed.Results:A total of 15 patients with hemodynamically unstable VT were included (8 patients in the rescue group and 7 patients in the preventive group). The acute procedure was successful in all patients. One patient in the rescue group had surgical left ventricular assist device (LVAD) implantation, remaining 14 patients received extracorporeal membrane oxygenation (ECMO) for circulation support. ECMO decannulation was performed in 12 patients due to clinical and hemodynamic stability, of which 6 patients were decannulation immediately after surgery and the remaining patients were decannulation at 2.0 (2.5) d after surgery. Two patients in the rescue group died during the index admission due to refractory heart failure and cerebral hemorrhage. During a median follow-up of 30 d (1 d to 12 months), one patient with LVAD had one episode of ventricular fibrillation at 6 months after discharge, and no further episodes of ventricular fibrillation and/or VT occurred after treatment with antiarrhythmic drugs. No malignant ventricular arrhythmia occurred in the remaining 12 patients who were followed up.Conclusions:MHS contributes to the successful completion of mapping and catheter ablation in patients with hemodynamically unstable VT, providing desirable hemodynamic status for emergency and elective conditions.
3.Establishment and efficiency test of a clinical prediction model of bronchopulmonary dysplasia associated pulmonary hypertension in very premature infants
Jingke CAO ; Haoqin FAN ; Yunbin XIAO ; Dan WANG ; Changgen LIU ; Xiaoming PENG ; Xirong GAO ; Shanghong TANG ; Tao HAN ; Yabo MEI ; Huayu LIANG ; Shumei WANG ; Feng WANG ; Qiuping LI
Chinese Journal of Pediatrics 2024;62(2):129-137
Objective:To develop a risk prediction model for identifying bronchopulmonary dysplasia (BPD) associated pulmonary hypertension (PH) in very premature infants.Methods:This was a retrospective cohort study. The clinical data of 626 very premature infants whose gestational age <32 weeks and who suffered from BPD were collected from October 1 st, 2015 to December 31 st, 2021 of the Seventh Medical Center of the People′s Liberation Army General Hospital as a modeling set. The clinical data of 229 very premature infants with BPD of Hunan Children′s Hospital from January 1 st, 2020 to December 31 st, 2021 were collected as a validation set for external verification. The very premature infants with BPD were divided into PH group and non PH group based on the echocardiogram after 36 weeks′ corrected age in the modeling set and validation set, respectively. Univariate analysis was used to compare the basic clinical characteristics between groups, and collinearity exclusion was carried out between variables. The risk factors of BPD associated PH were further screened out by multivariate Logistic regression, and the risk assessment model was established based on these variables. The receiver operating characteristic (ROC) area under curve (AUC) and Hosmer-Lemeshow goodness-of-fit test were used to evaluate the model′s discrimination and calibration power, respectively. And the calibration curve was used to evaluate the accuracy of the model and draw the nomogram. The bootstrap repeated sampling method was used for internal verification. Finally, decision curve analysis (DCA) to evaluate the clinical practicability of the model was used. Results:A total of 626 very premature infants with BPD were included for modeling set, including 85 very premature infants in the PH group and 541 very premature infants in the non PH group. A total of 229 very premature infants with BPD were included for validation set, including 24 very premature infants in the PH group and 205 very premature infants in the non PH group. Univariate analysis of the modeling set found that 22 variables, such as artificial conception, fetal distress, gestational age, birth weight, small for gestational age, 1 minute Apgar score ≤7, antenatal corticosteroids, placental abruption, oligohydramnios, multiple pulmonary surfactant, neonatal respiratory distress syndrome (NRDS)>stage Ⅱ, early pulmonary hypertension, moderate-severe BPD, and hemodynamically significant patent ductus arteriosus (hsPDA) all had statistically significant influence between the PH group and the non PH group (all P<0.05). Antenatal corticosteroids, fetal distress, NRDS >stage Ⅱ, hsPDA, pneumonia and days of invasive mechanical ventilation were identified as predictive variables and finally included to establish the Logistic regression model. The AUC of this model was 0.86 (95% CI 0.82-0.90), the cut-off value was 0.17, the sensitivity was 0.77, and the specificity was 0.84. Hosmer-Lemeshow goodness-of-fit test showed that P>0.05. The AUC for external validation was 0.88, and the Hosmer-Lemeshow goodness-of-fit test suggested P>0.05. Conclusions:A high sensitivity and specificity risk prediction model of PBD associated PH in very premature infants was established. This predictive model is useful for early clinical identification of infants at high risk of BPD associated PH.
4.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
5.Active components and potential mechanism of Taohong Siwu Decoction in regulating ischemic stroke based on target cell trapping combined with network pharmacology, molecular docking, and experimental validation.
Lin-Feng TANG ; Hao CHANG ; Dan-Dan WANG ; Zhu-Qing LIU ; Lan HAN ; Dai-Yin PENG
China Journal of Chinese Materia Medica 2023;48(17):4761-4773
The potential anti-stroke active components in Taohong Siwu Decoction(THSWD) were identified by target cell trapping coupled with ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry(UPLC-Q-TOF-MS). The underlying mechanism of active components in THSWD in the treatment of ischemic stroke(IS) was explored by network pharmacology, molecular docking, and experimental validation. The UPLC-Q-TOF-MS technology combined with the UNIFI data analysis platform was used to analyze the composition of the cellular fragmentation fluid after co-incubation of THSWD with target cells. The targets of potential active components and IS were collected by network pharmacology, and the common targets underwent protein-protein interaction(PPI), Gene Ontology(GO), and Kyoto Encyclopedia of Genes and Genomes(KEGG) signaling pathway enrichment analyses. The target cell trapping component-core target-signaling pathway network was constructed, and the active components were molecularly docked to the top targets in the PPI network, followed by pharmacodynamic validation in vitro. Fifteen active components were identified in the target cellular fragmentation fluid, including bicyclic monoterpenes, cyanoglycosides, flavonols, quinoid chalcones, phenylpropanoids, and tannins. As revealed by the analysis of network pharmacology, THSWD presumably regulated PI3K-AKT, FoxO, MAPK, Jak-STAT, VEGF, HIF-1, and other signaling pathways to affect inflammatory cascade reaction, angiogenesis, oxidative stress, pyroptosis, apoptosis, and other pathological processes via paeoniflorin, butylphthalide, dehydrated safflower yellow B, 3,4-dicaffeoylquinic acid, amygdalin, paeoniflorin, and ligusticolactone. Molecular docking and in vitro pharmacodynamic validation revealed that the target cell trapping active components could promote neovascularization in rat brain microvascular endothelial cells(rBMECs) in the oxygen-glucose deprivation/reoxygenation(OGD/R) model. The application of target cell trapping coupled with UPLC-Q-TOF-MS technology can rapidly screen out the potential active components in THSWD. The active components of THSWD can be predicted to intervene in the pathogenesis of IS through network pharmacology, and molecular docking combined with experimental validation can further clarify the efficacy, thus providing a theoretical basis for research ideas on the pharmacodynamic substance basis of traditional Chinese medicine compounds.
Animals
;
Rats
;
Ischemic Stroke/drug therapy*
;
Molecular Docking Simulation
;
Network Pharmacology
;
Endothelial Cells
;
Phosphatidylinositol 3-Kinases
;
Drugs, Chinese Herbal/pharmacology*
6.Advances in mechanism of traditional Chinese medicine in inhibiting angiogenesis in ovarian cancer.
Mao-Yan TANG ; Dan-Ni DING ; Ya-Ya XIE ; Fang SHEN ; Jia LI ; Fang-Yuan LIU ; Feng-Juan HAN
China Journal of Chinese Materia Medica 2023;48(24):6572-6581
Ovarian cancer is one of the three major cancers in gynecology. Ovarian cancer has insidious symptoms in its early stages and mostly has progressed to advanced stages when detected. Surgical treatment combined with chemotherapy is currently the main treatment, but the 5-year survival rate is still less than 45%. Angiogenesis is a key step in the growth and metastasis of ovarian cancer. The inhibition of ovarian cancer angiogenesis has become a new hotspot in anti-tumor targeted therapy, which has many advantages such as less drug resistance, high specificity, few side effects, and broad anti-tumor spectrum. Modern research has confirmed that traditional Chinese medicine(TCM) can inhibit tumor angiogenesis by inhibiting the expression of pro-angiogenic factors, up-regulating the expression of anti-angiogenic factors, inhibiting the proliferation of vascular endothelial cells, reducing the density of tumor microvessels, and regulating related signaling pathways, with unique advantages in the treatment of ovarian cancer. This paper presented a review of the role of TCM in inhibiting ovarian cancer angiogenesis in order to provide references for the optimization of clinical ovarian cancer treatment strategies.
Humans
;
Female
;
Medicine, Chinese Traditional
;
Vascular Endothelial Growth Factor A/metabolism*
;
Endothelial Cells/metabolism*
;
Angiogenesis
;
Angiogenesis Inhibitors/therapeutic use*
;
Ovarian Neoplasms/genetics*
;
Neovascularization, Pathologic/genetics*
7.Relationship between blood uric acid levels and body composition in patients with polycystic ovary syndrome.
Xue LI ; Jun Fei ZHANG ; Ya Ru FENG ; Qing Tao TANG ; Dan KUAI ; Wen Yan TIAN ; Hui Ying ZHANG
Chinese Journal of Obstetrics and Gynecology 2023;58(7):508-515
Objective: To analyze the difference in blood uric acid levels between patients with polycystic ovary syndrome (PCOS) and healthy women of childbearing age, and to investigate the correlation between body composition and blood uric acid levels. Methods: A total of 153 eligible childbearing age patients with PCOS treated at Tianjin Medical University General Hospital from January 2018 to March 2022 were selected, and 153 healthy women with normal menstruation were selected as the control group. Fasting blood uric acid levels were measured by venous blood test, and body composition was measured by a body composition analyzer. Group comparisons were made to analyze the correlation between body composition and blood uric acid levels. Results: The incidence of hyperuricemia was higher in patients with PCOS than that in the control group [30.1% (46/153) vs 2.0% (3/153)], with a statistically significant difference (χ2=44.429, P<0.001). Blood uric acid level was also significantly higher in patients with PCOS than that in the control group [(371±98) vs (265±67) μmol/L; t=11.170, P<0.001]. Among PCOS patients, there were statistically significant differences in weight, body mass index (BMI), body fat mass, skeletal muscle mass, percent body fat, lean body weight, fat mass/lean body weight, percent skeletal muscle, and visceral fat level between the hyperuricemia group and the normal blood uric acid group (all P<0.001), but no significant difference was observed in waist-hip ratio (P=0.348). The following body composition indicators: weight, BMI, waist-hip ratio, body fat mass, skeletal muscle mass, percent body fat, visceral fat level, lean body weight, and fat mass/lean body weight in all subjects, the PCOS patients and the control group, were positively correlated with blood uric acid levels (all P<0.01). The blood uric acid level in PCOS obese patients was higher than that in non-obese PCOS patients, and the difference was statistically significant [(425±83) vs (336±91) μmol/L; t=6.133, P<0.001]. The blood uric acid level in central obesity PCOS patients was also higher than that in non-central obesity PCOS patients [(385±95) vs (299±79) μmol/L], the difference was statistically significant (t=4.261, P<0.001). The blood uric acid level in normal-weight obese PCOS patients was higher than that in normal-weight non-obese PCOS patients [(333±73) vs (277±54) μmol/L], and the difference was statistically significant (t=2.848, P=0.006). Blood uric acid levels in normal-weight [(315±74) vs (255±67) μmol/L], overweight [(362±102) vs (276±57) μmol/L], and obese PCOS patients [(425±83) vs (303±74) μmol/L] were all higher than those in the corresponding control groups, with statistically significant differences (all P<0.001). Conclusions: PCOS patients have a higher incidence of hyperuricemia than healthy women of childbearing age. Blood uric acid levels are closely correlated with body composition indicators, such as weight, BMI, waist-hip ratio, body fat mass, skeletal muscle mass, percent body fat, and visceral fat level. Body composition analysis of women with PCOS could help identify potentially obese people more accurately and carry out individualized treatment, thereby reducing the risk of metabolic abnormalities.
Humans
;
Female
;
Polycystic Ovary Syndrome/complications*
;
Uric Acid
;
Hyperuricemia/complications*
;
Insulin
;
Body Composition/physiology*
;
Obesity/complications*
;
Body Mass Index
8.Safety and efficacy of the early administration of levosimendan in patients with acute non-ST-segment elevation myocardial infarction and elevated NT-proBNP levels: An Early Management Strategy of Acute Heart Failure (EMS-AHF).
Feng XU ; Yuan BIAN ; Guo Qiang ZHANG ; Lu Yao GAO ; Yu Fa LIU ; Tong Xiang LIU ; Gang LI ; Rui Xue SONG ; Li Jun SU ; Yan Ju ZHOU ; Jia Yu CUI ; Xian Liang YAN ; Fang Ming GUO ; Huan Yi ZHANG ; Qing Hui LI ; Min ZHAO ; Li Kun MA ; Bei An YOU ; Ge WANG ; Li KONG ; Jian Liang MA ; Xin Fu ZHOU ; Ze Long CHANG ; Zhen Yu TANG ; Dan Yu YU ; Kai CHENG ; Li XUE ; Xiao LI ; Jiao Jiao PANG ; Jia Li WANG ; Hai Tao ZHANG ; Xue Zhong YU ; Yu Guo CHEN
Chinese Journal of Internal Medicine 2023;62(4):374-383
Objectives: To investigated the safety and efficacy of treating patients with acute non-ST-segment elevation myocardial infarction (NSTEMI) and elevated levels of N-terminal pro-hormone B-type natriuretic peptide (NT-proBNP) with levosimendan within 24 hours of first medical contact (FMC). Methods: This multicenter, open-label, block-randomized controlled trial (NCT03189901) investigated the safety and efficacy of levosimendan as an early management strategy of acute heart failure (EMS-AHF) for patients with NSTEMI and high NT-proBNP levels. This study included 255 patients with NSTEMI and elevated NT-proBNP levels, including 142 males and 113 females with a median age of 65 (58-70) years, and were admitted in the emergency or outpatient departments at 14 medical centers in China between October 2017 and October 2021. The patients were randomly divided into a levosimendan group (n=129) and a control group (n=126). The primary outcome measure was NT-proBNP levels on day 3 of treatment and changes in the NT-proBNP levels from baseline on day 5 after randomization. The secondary outcome measures included the proportion of patients with more than 30% reduction in NT-proBNP levels from baseline, major adverse cardiovascular events (MACE) during hospitalization and at 6 months after hospitalization, safety during the treatment, and health economics indices. The measurement data parameters between groups were compared using the t-test or the non-parametric test. The count data parameters were compared between groups using the χ² test. Results: On day 3, the NT-proBNP levels in the levosimendan group were lower than the control group but were statistically insignificant [866 (455, 1 960) vs. 1 118 (459, 2 417) ng/L, Z=-1.25,P=0.21]. However, on day 5, changes in the NT-proBNP levels from baseline in the levosimendan group were significantly higher than the control group [67.6% (33.8%,82.5%)vs.54.8% (7.3%,77.9%), Z=-2.14, P=0.03]. There were no significant differences in the proportion of patients with more than 30% reduction in the NT-proBNP levels on day 5 between the levosimendan and the control groups [77.5% (100/129) vs. 69.0% (87/126), χ²=2.34, P=0.13]. Furthermore, incidences of MACE did not show any significant differences between the two groups during hospitalization [4.7% (6/129) vs. 7.1% (9/126), χ²=0.72, P=0.40] and at 6 months [14.7% (19/129) vs. 12.7% (16/126), χ²=0.22, P=0.64]. Four cardiac deaths were reported in the control group during hospitalization [0 (0/129) vs. 3.2% (4/126), P=0.06]. However, 6-month survival rates were comparable between the two groups (log-rank test, P=0.18). Moreover, adverse events or serious adverse events such as shock, ventricular fibrillation, and ventricular tachycardia were not reported in both the groups during levosimendan treatment (days 0-1). The total cost of hospitalization [34 591.00(15 527.46,59 324.80) vs. 37 144.65(16 066.90,63 919.00)yuan, Z=-0.26, P=0.80] and the total length of hospitalization [9 (8, 12) vs. 10 (7, 13) days, Z=0.72, P=0.72] were lower for patients in the levosimendan group compared to those in the control group, but did not show statistically significant differences. Conclusions: Early administration of levosimendan reduced NT-proBNP levels in NSTEMI patients with elevated NT-proBNP and did not increase the total cost and length of hospitalization, but did not significantly improve MACE during hospitalization or at 6 months.
Male
;
Female
;
Humans
;
Aged
;
Natriuretic Peptide, Brain
;
Simendan/therapeutic use*
;
Non-ST Elevated Myocardial Infarction
;
Heart Failure/drug therapy*
;
Peptide Fragments
;
Arrhythmias, Cardiac
;
Biomarkers
;
Prognosis
9.Anti-obesity and Gut Microbiota Modulation Effect of Astragalus Polysaccharides Combined with Berberine on High-Fat Diet-Fed Obese Mice.
Shi-Jun YUE ; Wen-Xiao WANG ; Lei ZHANG ; Juan LIU ; Wu-Wen FENG ; Huan GAO ; Yu-Ping TANG ; Dan YAN
Chinese journal of integrative medicine 2023;29(7):617-625
OBJECTIVE:
To investigate whether astragalus polysaccharides (APS) combined with berberine (BBR) can reduce high-fat diet (HFD)-induced obesity in mice.
METHODS:
Except for normal mice, 32 HFD-induced obese mice were randomized into HFD, APS (1,000 mg/kg APS), BBR (200 mg/kg BBR), and APS plus BBR (1,000 mg/kg APS plus 200 mg/kg BBR) groups, respectively. After 6-week treatment (once daily by gavage), the obesity phenotype and pharmacodynamic effects were evaluated by histopathological examination of epididymal fat, liver, and colon using hematoxylin-eosin staining and serum biochemical analyses by an automated chemistry analyzer. The feces were collected at the 12 th week, and taxonomic and functional profiles of gut microbiota were analyzed by 16S ribosomal ribonucleic acid (16S rRNA) sequencing.
RESULTS:
Compared with HFD group, the average body weight of APS plus BBR group was decreased (P<0.01), accompanied with the reduced fat accumulation, enhanced colonic integrity, insulin sensitivity and glucose homeostasis (P<0.05 or P<0.01). Importantly, APS combined with BBR treatment was more effective than APS or BBR alone in improving HFD-induced insulin resistance (P<0.05 or P<0.01). 16S rRNA sequence-based analysis of fecal samples demonstrated that APS combined with BBR treatment exhibited a better impact on HFD-induced gut microbiota dysbiosis, exclusively via the enriched abundances of Bacteroides, which corresponded to the large increase of predicted bacterial genes involved in carbohydrate metabolism.
CONCLUSION
APS combined with BBR may synergistically reduce obesity and modulate the gut microbiota in HFD-fed mice.
Mice
;
Animals
;
Diet, High-Fat
;
Berberine/therapeutic use*
;
Mice, Obese
;
RNA, Ribosomal, 16S/genetics*
;
Gastrointestinal Microbiome
;
Obesity/drug therapy*
;
Insulin Resistance
;
Mice, Inbred C57BL
10.Application of virtual simulation combined with flipped classroom in experimental teaching of the nursing care of falls in the elderly
Dan QIU ; Hong JIANG ; Yueping ZHU ; Ting TANG ; Yaling LI ; Yan FENG ; Fu DING
Chinese Journal of Medical Education Research 2023;22(12):1901-1905
Objective:To investigate the application effect of virtual simulation combined with flipped classroom in experimental teaching of the nursing care of falls in the elderly.Methods:The 497 nursing undergraduates in the class of 2019 in Chongqing Medical University were selected as subjects and were then divided into control group (two classes with 251 students) and intervention group (two classes with 246 students). The students in the control group received traditional experimental teaching, and those in the intervention group received blended experimental teaching with virtual simulation combined with flipped classroom. At the end of the course, the use of virtual simulation platform was analyzed for the students in the intervention group, and a questionnaire survey and theoretical examination were used to compare the effect of experimental teaching between the two groups. SPSS 27.0 was used for the t-test and the chi-square test. Results:The frequency of use of the virtual simulation platform was (2.65±1.38) times per person in the intervention group, with an online learning time of 54.12-147.32 minutes. The questionnaire survey showed that compared with the control group, the intervention group had significantly higher scores of the achievement of teaching objectives and teaching satisfaction ( P<0.05). Compared with the control group after teaching, the intervention group had significantly higher scores of teaching promotion in terms of stimulating learning interest, cultivating self-learning ability, developing clinical thinking ability, improving innovation, and enhancing health education ability ( P<0.05). The intervention group had a significantly higher theoretical examination score than the control group [(79.38±5.09) vs. (77.88±4.97), P<0.05]. Conclusions:In the blended experimental teaching of the nursing care of falls in the elderly, virtual simulation combined with flipped classroom can help students master related knowledge and skills and cultivate their self-learning ability, clinical thinking ability, innovation ability, and health education ability.

Result Analysis
Print
Save
E-mail