1.Protective Effect of Bushen Zhuyun Prescription on Abortion Rats with Kidney Deficiency-Corpus Luteum Inhibition Syndrome via ERα/PI3K/Akt Signaling Pathwa
Changyue SONG ; Siyu LI ; Fengyu HUANG ; Mingzhu QI ; Daiyue DING ; Shuangfei DENG ; Heqiao LI ; Jinghong XIE ; Guohua WANG ; Chen ZANG ; Hong XU ; Xiaohui SU ; Xiangying KONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):107-116
ObjectiveTo investigate the protective effects and mechanisms of Bushen Zhuyun prescription (BSZY) on abortion rats with kidney deficiency-corpus luteum inhibition syndrome. MethodsAn abortion rat model with kidney deficiency-corpus luteum inhibition syndrome was constructed. Pregnant mice aged 8-10 weeks were randomly divided into a control group (Control), a model group (Model), low-dose BSZY (BSZY-L), medium-dose BSZY (BSZY-M), and high-dose BSZY (BSZY-H) groups (2.57, 5.14, 10.28 g·kg-¹), and a Zishen Yutai Pill (ZSYT) group (1.575 g·kg-¹). Hematoxylin-eosin (HE) staining was used to evaluate histopathological changes in ovarian and decidual tissue of rats in each group. Enzyme-linked immunosorbent assay (ELISA) was employed to measure levels of estrogen (E₂), progesterone (P), luteinizing hormone (LH), prolactin (PRL), and follicle-stimulating hormone (FSH) in serum. The candidate targets of BSZY were obtained from the Traditional Chinese Medicine System Pharmacology Platform (TCMSP) and Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine (TCMIP) v2.0 databases, while disease targets for recurrent spontaneous abortion (RSA) were retrieved from GeneCards, DrugBank, Online Mendelian Inheritance in Man (OMIM), and Therapeutic Target Database (TTD). The intersection targets were identified by the Venny 2.1.0 platform. Pathway enrichment analysis was conducted based on the Metascape database to predict the potential mechanisms of BSZY. Additionally. Western blot was used to verify the effects of BSZY on the expression of estrogen receptor (ERα), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt) and explore its protective mechanism on RSA rats. ResultsCompared with the control group, the model group exhibited significantly decreased uterine, ovarian, and embryonic wet weights (P<0.05, P<0.01), with an abortion rate of 57.18%. The ovarian tissue showed varying degrees of reduction in primordial follicles, primary follicles, mature follicles, and corpora lutea, along with a large number of atretic follicles. The endometrium was thinner, and decidual tissue exhibited cellular edema and disorganized arrangement. In contrast, compared with the model group, the BSZY groups at all doses and the ZSYT group demonstrated increased uterine, ovarian, and embryonic wet weights, along with a reduced abortion rate. The number of primordial follicles, primary follicles, mature follicles, and corpora lutea increased, while atretic follicles decreased. The endometrium thickened, and decidual tissue displayed normal cellular structure with tight arrangement. Additionally, the model group showed significantly decreased levels of E₂, P, PRL, and FSH in serum (P<0.05, P<0.01), along with a decreasing trend in LH level. In contrast, the BSZY groups at all doses exhibited significantly elevated levels of E₂, P, LH, PRL, and FSH in serum (P<0.05, P<0.01). Network pharmacology predictions suggested that BSZY may exert protective effects against abortion in rats by activating the ERα/PI3K/Akt signaling pathway. Western blot results confirmed that BSZY significantly upregulated the expression of ERα, PI3K, and p-Akt proteins (P<0.05, P<0.01). ConclusionBSZY has a protective effect on the abortion rats with kidney deficiency-corpus luteum inhibition syndrome, possibly by activating the ERα/PI3K/Akt signaling pathway to reduce ovarian apoptosis and regulate endocrine function, thereby lowering the abortion rate.
2.Chitosan Nerve Grafts Incorporated with SKP-SC-EVs Induce Peripheral Nerve Regeneration
Xinyang ZHOU ; Miaomei YU ; Daiyue CHEN ; Chunyan DENG ; Qi ZHANG ; Xiaosong GU ; Fei DING
Tissue Engineering and Regenerative Medicine 2023;20(2):309-322
BACKGROUND:
Repair of long-distance peripheral nerve defects remains an important clinical problem. Nerve grafts incorporated with extracellular vesicles (EVs) from various cell types have been developed to bridge peripheral nerve defects. In our previous research, EVs obtained from skin-derived precursor Schwann cells (SKP-SC-EVs) were demonstrated to promote neurite outgrowth in cultured cells and facilitate nerve regeneration in animal studies.
METHODS:
To further assess the functions of SKP-SC-EVs in nerve repair, we incorporated SKP-SC-EVs and Matrigel into chitosan nerve conduits (EV-NG) for repairing a 15-mm long-distance sciatic nerve defect in a rat model. Behavioral analysis, electrophysiological recording, histological investigation, molecular analysis, and morphometric assessment were carried out.
RESULTS:
The results revealed EV-NG significantly improved motor and sensory function recovery compared with nerve conduits (NG) without EVs incorporation. The outgrowth and myelination of regenerated axons were improved, while the atrophy of target muscles induced by denervation was alleviated after EVs addition.
CONCLUSION
Our data indicated SKP-SC-EVs incorporation into nerve grafts represents a promising method for extended peripheral nerve damage repair.

Result Analysis
Print
Save
E-mail