1.Explainability Enhanced Machine Learning Model for Classifying Intellectual Disability and AttentionDeficit/Hyperactivity Disorder With Psychological Test Reports
Tong Min KIM ; Young-Hoon KIM ; Sung-Hee SONG ; In-Young CHOI ; Dai-Jin KIM ; Taehoon KO
Journal of Korean Medical Science 2025;40(11):e26-
Background:
Psychological test reports are essential in assessing intellectual functioning, aiding in diagnosing and treating intellectual disability (ID) and attention-deficit/ hyperactivity disorder (ADHD). However, these reports can have several problems because they are diverse, unstructured, subjective, and involve human errors. Additionally, physicians often do not read the entire report, and the number of reports is lower than that of diagnoses.
Methods:
We developed explainable predictive models for classifying IDs and ADHDs based on written reports to address these issues. The reports of 1,475 patients with IDs and ADHDs who underwent intelligence tests were used for the models. These models were developed by analyzing reports using natural language processing (NLP) and incorporating the physician’s diagnosis for each report. We selected n-gram features from the models’ results by extracting important features using SHapley Additive exPlanations and permutation importance to make the models explainable. Developing the n-gram feature-based original text search system compensated for the lack of human readability caused by NLP and enabled the reconstruction of human-readable texts from the selected n-gram features.
Results:
The maximum model accuracy was 0.92, and the 80 human-readable texts were restored from four models.
Conclusion
The results showed that the models could accurately classify IDs and ADHDs, even with a few reports. The models were also able to explain their predictions. The explainability-enhanced model can help physicians understand the classification process of IDs and ADHDs and provide evidence-based insights.
2.Dementia Overdiagnosis in Younger, Higher Educated Individuals Based on MMSE Alone: Analysis Using Deep Learning Technology
Hye-Geum KIM ; Dai-Seg BAI ; Bon-Hoon KOO ; Eun-Jin CHEON ; Seokho YUN ; So Hye JO ; Byoungyoung GU
Journal of Korean Medical Science 2025;40(9):e20-
Background:
Dementia is a multifaceted disorder that affects cognitive function, necessitating accurate diagnosis for effective management and treatment. Although the Mini-Mental State Examination (MMSE) is widely used to assess cognitive impairment, its standalone efficacy is debated. This study examined the effectiveness of the MMSE alone versus in combination with other cognitive assessments in predicting dementia diagnosis, with the aim of refining the diagnostic accuracy for dementia.
Methods:
A total of 2,863 participants with subjective cognitive complaints who underwent comprehensive neuropsychological assessments were included. We developed two random forest models: one using only the MMSE and another incorporating additional cognitive tests.These models were evaluated based on their accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC) on a 70:30 training-to-testing split.
Results:
The MMSE-alone model predicted dementia with an accuracy of 86% and AUC of 0.872. The expanded model demonstrated increased accuracy (88%) and an AUC of 0.934.Notably, 17.46% of the cases were reclassified from dementia to non-dementia category upon including additional tests. Higher educational level and younger age were associated with these shifts.
Conclusion
The findings suggest that although the MMSE is a valuable screening tool, it should not be used in isolation to determine dementia severity. The addition of diverse cognitive assessments can significantly enhance diagnostic precision, particularly in younger and more educated populations. Future diagnostic protocols should integrate multifaceted cognitive evaluations to reflect the complexity of dementia accurately.
3.Explainability Enhanced Machine Learning Model for Classifying Intellectual Disability and AttentionDeficit/Hyperactivity Disorder With Psychological Test Reports
Tong Min KIM ; Young-Hoon KIM ; Sung-Hee SONG ; In-Young CHOI ; Dai-Jin KIM ; Taehoon KO
Journal of Korean Medical Science 2025;40(11):e26-
Background:
Psychological test reports are essential in assessing intellectual functioning, aiding in diagnosing and treating intellectual disability (ID) and attention-deficit/ hyperactivity disorder (ADHD). However, these reports can have several problems because they are diverse, unstructured, subjective, and involve human errors. Additionally, physicians often do not read the entire report, and the number of reports is lower than that of diagnoses.
Methods:
We developed explainable predictive models for classifying IDs and ADHDs based on written reports to address these issues. The reports of 1,475 patients with IDs and ADHDs who underwent intelligence tests were used for the models. These models were developed by analyzing reports using natural language processing (NLP) and incorporating the physician’s diagnosis for each report. We selected n-gram features from the models’ results by extracting important features using SHapley Additive exPlanations and permutation importance to make the models explainable. Developing the n-gram feature-based original text search system compensated for the lack of human readability caused by NLP and enabled the reconstruction of human-readable texts from the selected n-gram features.
Results:
The maximum model accuracy was 0.92, and the 80 human-readable texts were restored from four models.
Conclusion
The results showed that the models could accurately classify IDs and ADHDs, even with a few reports. The models were also able to explain their predictions. The explainability-enhanced model can help physicians understand the classification process of IDs and ADHDs and provide evidence-based insights.
4.Dementia Overdiagnosis in Younger, Higher Educated Individuals Based on MMSE Alone: Analysis Using Deep Learning Technology
Hye-Geum KIM ; Dai-Seg BAI ; Bon-Hoon KOO ; Eun-Jin CHEON ; Seokho YUN ; So Hye JO ; Byoungyoung GU
Journal of Korean Medical Science 2025;40(9):e20-
Background:
Dementia is a multifaceted disorder that affects cognitive function, necessitating accurate diagnosis for effective management and treatment. Although the Mini-Mental State Examination (MMSE) is widely used to assess cognitive impairment, its standalone efficacy is debated. This study examined the effectiveness of the MMSE alone versus in combination with other cognitive assessments in predicting dementia diagnosis, with the aim of refining the diagnostic accuracy for dementia.
Methods:
A total of 2,863 participants with subjective cognitive complaints who underwent comprehensive neuropsychological assessments were included. We developed two random forest models: one using only the MMSE and another incorporating additional cognitive tests.These models were evaluated based on their accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC) on a 70:30 training-to-testing split.
Results:
The MMSE-alone model predicted dementia with an accuracy of 86% and AUC of 0.872. The expanded model demonstrated increased accuracy (88%) and an AUC of 0.934.Notably, 17.46% of the cases were reclassified from dementia to non-dementia category upon including additional tests. Higher educational level and younger age were associated with these shifts.
Conclusion
The findings suggest that although the MMSE is a valuable screening tool, it should not be used in isolation to determine dementia severity. The addition of diverse cognitive assessments can significantly enhance diagnostic precision, particularly in younger and more educated populations. Future diagnostic protocols should integrate multifaceted cognitive evaluations to reflect the complexity of dementia accurately.
5.Explainability Enhanced Machine Learning Model for Classifying Intellectual Disability and AttentionDeficit/Hyperactivity Disorder With Psychological Test Reports
Tong Min KIM ; Young-Hoon KIM ; Sung-Hee SONG ; In-Young CHOI ; Dai-Jin KIM ; Taehoon KO
Journal of Korean Medical Science 2025;40(11):e26-
Background:
Psychological test reports are essential in assessing intellectual functioning, aiding in diagnosing and treating intellectual disability (ID) and attention-deficit/ hyperactivity disorder (ADHD). However, these reports can have several problems because they are diverse, unstructured, subjective, and involve human errors. Additionally, physicians often do not read the entire report, and the number of reports is lower than that of diagnoses.
Methods:
We developed explainable predictive models for classifying IDs and ADHDs based on written reports to address these issues. The reports of 1,475 patients with IDs and ADHDs who underwent intelligence tests were used for the models. These models were developed by analyzing reports using natural language processing (NLP) and incorporating the physician’s diagnosis for each report. We selected n-gram features from the models’ results by extracting important features using SHapley Additive exPlanations and permutation importance to make the models explainable. Developing the n-gram feature-based original text search system compensated for the lack of human readability caused by NLP and enabled the reconstruction of human-readable texts from the selected n-gram features.
Results:
The maximum model accuracy was 0.92, and the 80 human-readable texts were restored from four models.
Conclusion
The results showed that the models could accurately classify IDs and ADHDs, even with a few reports. The models were also able to explain their predictions. The explainability-enhanced model can help physicians understand the classification process of IDs and ADHDs and provide evidence-based insights.
6.Dementia Overdiagnosis in Younger, Higher Educated Individuals Based on MMSE Alone: Analysis Using Deep Learning Technology
Hye-Geum KIM ; Dai-Seg BAI ; Bon-Hoon KOO ; Eun-Jin CHEON ; Seokho YUN ; So Hye JO ; Byoungyoung GU
Journal of Korean Medical Science 2025;40(9):e20-
Background:
Dementia is a multifaceted disorder that affects cognitive function, necessitating accurate diagnosis for effective management and treatment. Although the Mini-Mental State Examination (MMSE) is widely used to assess cognitive impairment, its standalone efficacy is debated. This study examined the effectiveness of the MMSE alone versus in combination with other cognitive assessments in predicting dementia diagnosis, with the aim of refining the diagnostic accuracy for dementia.
Methods:
A total of 2,863 participants with subjective cognitive complaints who underwent comprehensive neuropsychological assessments were included. We developed two random forest models: one using only the MMSE and another incorporating additional cognitive tests.These models were evaluated based on their accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC) on a 70:30 training-to-testing split.
Results:
The MMSE-alone model predicted dementia with an accuracy of 86% and AUC of 0.872. The expanded model demonstrated increased accuracy (88%) and an AUC of 0.934.Notably, 17.46% of the cases were reclassified from dementia to non-dementia category upon including additional tests. Higher educational level and younger age were associated with these shifts.
Conclusion
The findings suggest that although the MMSE is a valuable screening tool, it should not be used in isolation to determine dementia severity. The addition of diverse cognitive assessments can significantly enhance diagnostic precision, particularly in younger and more educated populations. Future diagnostic protocols should integrate multifaceted cognitive evaluations to reflect the complexity of dementia accurately.
7.Explainability Enhanced Machine Learning Model for Classifying Intellectual Disability and AttentionDeficit/Hyperactivity Disorder With Psychological Test Reports
Tong Min KIM ; Young-Hoon KIM ; Sung-Hee SONG ; In-Young CHOI ; Dai-Jin KIM ; Taehoon KO
Journal of Korean Medical Science 2025;40(11):e26-
Background:
Psychological test reports are essential in assessing intellectual functioning, aiding in diagnosing and treating intellectual disability (ID) and attention-deficit/ hyperactivity disorder (ADHD). However, these reports can have several problems because they are diverse, unstructured, subjective, and involve human errors. Additionally, physicians often do not read the entire report, and the number of reports is lower than that of diagnoses.
Methods:
We developed explainable predictive models for classifying IDs and ADHDs based on written reports to address these issues. The reports of 1,475 patients with IDs and ADHDs who underwent intelligence tests were used for the models. These models were developed by analyzing reports using natural language processing (NLP) and incorporating the physician’s diagnosis for each report. We selected n-gram features from the models’ results by extracting important features using SHapley Additive exPlanations and permutation importance to make the models explainable. Developing the n-gram feature-based original text search system compensated for the lack of human readability caused by NLP and enabled the reconstruction of human-readable texts from the selected n-gram features.
Results:
The maximum model accuracy was 0.92, and the 80 human-readable texts were restored from four models.
Conclusion
The results showed that the models could accurately classify IDs and ADHDs, even with a few reports. The models were also able to explain their predictions. The explainability-enhanced model can help physicians understand the classification process of IDs and ADHDs and provide evidence-based insights.
8.Dementia Overdiagnosis in Younger, Higher Educated Individuals Based on MMSE Alone: Analysis Using Deep Learning Technology
Hye-Geum KIM ; Dai-Seg BAI ; Bon-Hoon KOO ; Eun-Jin CHEON ; Seokho YUN ; So Hye JO ; Byoungyoung GU
Journal of Korean Medical Science 2025;40(9):e20-
Background:
Dementia is a multifaceted disorder that affects cognitive function, necessitating accurate diagnosis for effective management and treatment. Although the Mini-Mental State Examination (MMSE) is widely used to assess cognitive impairment, its standalone efficacy is debated. This study examined the effectiveness of the MMSE alone versus in combination with other cognitive assessments in predicting dementia diagnosis, with the aim of refining the diagnostic accuracy for dementia.
Methods:
A total of 2,863 participants with subjective cognitive complaints who underwent comprehensive neuropsychological assessments were included. We developed two random forest models: one using only the MMSE and another incorporating additional cognitive tests.These models were evaluated based on their accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC) on a 70:30 training-to-testing split.
Results:
The MMSE-alone model predicted dementia with an accuracy of 86% and AUC of 0.872. The expanded model demonstrated increased accuracy (88%) and an AUC of 0.934.Notably, 17.46% of the cases were reclassified from dementia to non-dementia category upon including additional tests. Higher educational level and younger age were associated with these shifts.
Conclusion
The findings suggest that although the MMSE is a valuable screening tool, it should not be used in isolation to determine dementia severity. The addition of diverse cognitive assessments can significantly enhance diagnostic precision, particularly in younger and more educated populations. Future diagnostic protocols should integrate multifaceted cognitive evaluations to reflect the complexity of dementia accurately.
9.Deep learning-based surgical phase recognition in laparoscopic cholecystectomy
Hye Yeon YANG ; Seung Soo HONG ; Jihun YOON ; Bokyung PARK ; Youngno YOON ; Dai Hoon HAN ; Gi Hong CHOI ; Min-Kook CHOI ; Sung Hyun KIM
Annals of Hepato-Biliary-Pancreatic Surgery 2024;28(4):466-473
Background:
s/Aims: Artificial intelligence (AI) technology has been used to assess surgery quality, educate, and evaluate surgical performance using video recordings in the minimally invasive surgery era. Much attention has been paid to automating surgical workflow analysis from surgical videos for an effective evaluation to achieve the assessment and evaluation. This study aimed to design a deep learning model to automatically identify surgical phases using laparoscopic cholecystectomy videos and automatically assess the accuracy of recognizing surgical phases.
Methods:
One hundred and twenty cholecystectomy videos from a public dataset (Cholec80) and 40 laparoscopic cholecystectomy videos recorded between July 2022 and December 2022 at a single institution were collected. These datasets were split into training and testing datasets for the AI model at a 2:1 ratio. Test scenarios were constructed according to structural characteristics of the trained model. No pre- or post-processing of input data or inference output was performed to accurately analyze the effect of the label on model training.
Results:
A total of 98,234 frames were extracted from 40 cases as test data. The overall accuracy of the model was 91.2%. The most accurate phase was Calot’s triangle dissection (F1 score: 0.9421), whereas the least accurate phase was clipping and cutting (F1 score:0.7761).
Conclusions
Our AI model identified phases of laparoscopic cholecystectomy with a high accuracy.
10.Deep learning-based surgical phase recognition in laparoscopic cholecystectomy
Hye Yeon YANG ; Seung Soo HONG ; Jihun YOON ; Bokyung PARK ; Youngno YOON ; Dai Hoon HAN ; Gi Hong CHOI ; Min-Kook CHOI ; Sung Hyun KIM
Annals of Hepato-Biliary-Pancreatic Surgery 2024;28(4):466-473
Background:
s/Aims: Artificial intelligence (AI) technology has been used to assess surgery quality, educate, and evaluate surgical performance using video recordings in the minimally invasive surgery era. Much attention has been paid to automating surgical workflow analysis from surgical videos for an effective evaluation to achieve the assessment and evaluation. This study aimed to design a deep learning model to automatically identify surgical phases using laparoscopic cholecystectomy videos and automatically assess the accuracy of recognizing surgical phases.
Methods:
One hundred and twenty cholecystectomy videos from a public dataset (Cholec80) and 40 laparoscopic cholecystectomy videos recorded between July 2022 and December 2022 at a single institution were collected. These datasets were split into training and testing datasets for the AI model at a 2:1 ratio. Test scenarios were constructed according to structural characteristics of the trained model. No pre- or post-processing of input data or inference output was performed to accurately analyze the effect of the label on model training.
Results:
A total of 98,234 frames were extracted from 40 cases as test data. The overall accuracy of the model was 91.2%. The most accurate phase was Calot’s triangle dissection (F1 score: 0.9421), whereas the least accurate phase was clipping and cutting (F1 score:0.7761).
Conclusions
Our AI model identified phases of laparoscopic cholecystectomy with a high accuracy.

Result Analysis
Print
Save
E-mail