1.Explainability Enhanced Machine Learning Model for Classifying Intellectual Disability and AttentionDeficit/Hyperactivity Disorder With Psychological Test Reports
Tong Min KIM ; Young-Hoon KIM ; Sung-Hee SONG ; In-Young CHOI ; Dai-Jin KIM ; Taehoon KO
Journal of Korean Medical Science 2025;40(11):e26-
Background:
Psychological test reports are essential in assessing intellectual functioning, aiding in diagnosing and treating intellectual disability (ID) and attention-deficit/ hyperactivity disorder (ADHD). However, these reports can have several problems because they are diverse, unstructured, subjective, and involve human errors. Additionally, physicians often do not read the entire report, and the number of reports is lower than that of diagnoses.
Methods:
We developed explainable predictive models for classifying IDs and ADHDs based on written reports to address these issues. The reports of 1,475 patients with IDs and ADHDs who underwent intelligence tests were used for the models. These models were developed by analyzing reports using natural language processing (NLP) and incorporating the physician’s diagnosis for each report. We selected n-gram features from the models’ results by extracting important features using SHapley Additive exPlanations and permutation importance to make the models explainable. Developing the n-gram feature-based original text search system compensated for the lack of human readability caused by NLP and enabled the reconstruction of human-readable texts from the selected n-gram features.
Results:
The maximum model accuracy was 0.92, and the 80 human-readable texts were restored from four models.
Conclusion
The results showed that the models could accurately classify IDs and ADHDs, even with a few reports. The models were also able to explain their predictions. The explainability-enhanced model can help physicians understand the classification process of IDs and ADHDs and provide evidence-based insights.
2.Explainability Enhanced Machine Learning Model for Classifying Intellectual Disability and AttentionDeficit/Hyperactivity Disorder With Psychological Test Reports
Tong Min KIM ; Young-Hoon KIM ; Sung-Hee SONG ; In-Young CHOI ; Dai-Jin KIM ; Taehoon KO
Journal of Korean Medical Science 2025;40(11):e26-
Background:
Psychological test reports are essential in assessing intellectual functioning, aiding in diagnosing and treating intellectual disability (ID) and attention-deficit/ hyperactivity disorder (ADHD). However, these reports can have several problems because they are diverse, unstructured, subjective, and involve human errors. Additionally, physicians often do not read the entire report, and the number of reports is lower than that of diagnoses.
Methods:
We developed explainable predictive models for classifying IDs and ADHDs based on written reports to address these issues. The reports of 1,475 patients with IDs and ADHDs who underwent intelligence tests were used for the models. These models were developed by analyzing reports using natural language processing (NLP) and incorporating the physician’s diagnosis for each report. We selected n-gram features from the models’ results by extracting important features using SHapley Additive exPlanations and permutation importance to make the models explainable. Developing the n-gram feature-based original text search system compensated for the lack of human readability caused by NLP and enabled the reconstruction of human-readable texts from the selected n-gram features.
Results:
The maximum model accuracy was 0.92, and the 80 human-readable texts were restored from four models.
Conclusion
The results showed that the models could accurately classify IDs and ADHDs, even with a few reports. The models were also able to explain their predictions. The explainability-enhanced model can help physicians understand the classification process of IDs and ADHDs and provide evidence-based insights.
3.Explainability Enhanced Machine Learning Model for Classifying Intellectual Disability and AttentionDeficit/Hyperactivity Disorder With Psychological Test Reports
Tong Min KIM ; Young-Hoon KIM ; Sung-Hee SONG ; In-Young CHOI ; Dai-Jin KIM ; Taehoon KO
Journal of Korean Medical Science 2025;40(11):e26-
Background:
Psychological test reports are essential in assessing intellectual functioning, aiding in diagnosing and treating intellectual disability (ID) and attention-deficit/ hyperactivity disorder (ADHD). However, these reports can have several problems because they are diverse, unstructured, subjective, and involve human errors. Additionally, physicians often do not read the entire report, and the number of reports is lower than that of diagnoses.
Methods:
We developed explainable predictive models for classifying IDs and ADHDs based on written reports to address these issues. The reports of 1,475 patients with IDs and ADHDs who underwent intelligence tests were used for the models. These models were developed by analyzing reports using natural language processing (NLP) and incorporating the physician’s diagnosis for each report. We selected n-gram features from the models’ results by extracting important features using SHapley Additive exPlanations and permutation importance to make the models explainable. Developing the n-gram feature-based original text search system compensated for the lack of human readability caused by NLP and enabled the reconstruction of human-readable texts from the selected n-gram features.
Results:
The maximum model accuracy was 0.92, and the 80 human-readable texts were restored from four models.
Conclusion
The results showed that the models could accurately classify IDs and ADHDs, even with a few reports. The models were also able to explain their predictions. The explainability-enhanced model can help physicians understand the classification process of IDs and ADHDs and provide evidence-based insights.
4.Explainability Enhanced Machine Learning Model for Classifying Intellectual Disability and AttentionDeficit/Hyperactivity Disorder With Psychological Test Reports
Tong Min KIM ; Young-Hoon KIM ; Sung-Hee SONG ; In-Young CHOI ; Dai-Jin KIM ; Taehoon KO
Journal of Korean Medical Science 2025;40(11):e26-
Background:
Psychological test reports are essential in assessing intellectual functioning, aiding in diagnosing and treating intellectual disability (ID) and attention-deficit/ hyperactivity disorder (ADHD). However, these reports can have several problems because they are diverse, unstructured, subjective, and involve human errors. Additionally, physicians often do not read the entire report, and the number of reports is lower than that of diagnoses.
Methods:
We developed explainable predictive models for classifying IDs and ADHDs based on written reports to address these issues. The reports of 1,475 patients with IDs and ADHDs who underwent intelligence tests were used for the models. These models were developed by analyzing reports using natural language processing (NLP) and incorporating the physician’s diagnosis for each report. We selected n-gram features from the models’ results by extracting important features using SHapley Additive exPlanations and permutation importance to make the models explainable. Developing the n-gram feature-based original text search system compensated for the lack of human readability caused by NLP and enabled the reconstruction of human-readable texts from the selected n-gram features.
Results:
The maximum model accuracy was 0.92, and the 80 human-readable texts were restored from four models.
Conclusion
The results showed that the models could accurately classify IDs and ADHDs, even with a few reports. The models were also able to explain their predictions. The explainability-enhanced model can help physicians understand the classification process of IDs and ADHDs and provide evidence-based insights.
5.Predicting Treatment Response to Antidepressants in Patients with Major Depressive Disorder Based on Longitudinal Clinical Data Using Artificial Intelligence:A Pilot Study
Junhee LEE ; Seung-Hwan BAEK ; Min-Kyung JANG ; Hyeon-Hee SIM ; In Young CHOI ; Dai-Jin KIM
Mood and Emotion 2024;22(3):63-68
Background:
The diagnosis of major depressive disorder (MDD) relies primarily on clinical interviews, which can be subjective and time consuming. Thus, there is a need for more objective diagnostic tools. The aim of this study was to develop an artificial intelligence (AI) application that predicts the antidepressant drug response of individual patients with MDD based on longitudinal data.
Methods:
Longitudinal data from patient records, including sex, age, outpatient or inpatient status, medication type and dosage, and the Hamilton Depression Rating Scale (HAMD) scores, were used to train the Transformer model and the 1-dimensional convolutional neural network model. Individual patient records were allocated to training (80%), validation (10%), and testing (10%) datasets.
Results:
The AI model demonstrated 88% sensitivity and 92% specificity for predicting the treatment response. Significant factors independently associated with the antidepressant response included age, sex, history of depression, and baseline HAMD scores.
Conclusion
This AI-driven software application provides a clinically valuable tool for predicting treatment response.While promising, further research is needed to incorporate voice data into the AI model using the voice recording feature to further improve diagnostic accuracy.
6.Predicting Treatment Response to Antidepressants in Patients with Major Depressive Disorder Based on Longitudinal Clinical Data Using Artificial Intelligence:A Pilot Study
Junhee LEE ; Seung-Hwan BAEK ; Min-Kyung JANG ; Hyeon-Hee SIM ; In Young CHOI ; Dai-Jin KIM
Mood and Emotion 2024;22(3):63-68
Background:
The diagnosis of major depressive disorder (MDD) relies primarily on clinical interviews, which can be subjective and time consuming. Thus, there is a need for more objective diagnostic tools. The aim of this study was to develop an artificial intelligence (AI) application that predicts the antidepressant drug response of individual patients with MDD based on longitudinal data.
Methods:
Longitudinal data from patient records, including sex, age, outpatient or inpatient status, medication type and dosage, and the Hamilton Depression Rating Scale (HAMD) scores, were used to train the Transformer model and the 1-dimensional convolutional neural network model. Individual patient records were allocated to training (80%), validation (10%), and testing (10%) datasets.
Results:
The AI model demonstrated 88% sensitivity and 92% specificity for predicting the treatment response. Significant factors independently associated with the antidepressant response included age, sex, history of depression, and baseline HAMD scores.
Conclusion
This AI-driven software application provides a clinically valuable tool for predicting treatment response.While promising, further research is needed to incorporate voice data into the AI model using the voice recording feature to further improve diagnostic accuracy.
7.Predicting Treatment Response to Antidepressants in Patients with Major Depressive Disorder Based on Longitudinal Clinical Data Using Artificial Intelligence:A Pilot Study
Junhee LEE ; Seung-Hwan BAEK ; Min-Kyung JANG ; Hyeon-Hee SIM ; In Young CHOI ; Dai-Jin KIM
Mood and Emotion 2024;22(3):63-68
Background:
The diagnosis of major depressive disorder (MDD) relies primarily on clinical interviews, which can be subjective and time consuming. Thus, there is a need for more objective diagnostic tools. The aim of this study was to develop an artificial intelligence (AI) application that predicts the antidepressant drug response of individual patients with MDD based on longitudinal data.
Methods:
Longitudinal data from patient records, including sex, age, outpatient or inpatient status, medication type and dosage, and the Hamilton Depression Rating Scale (HAMD) scores, were used to train the Transformer model and the 1-dimensional convolutional neural network model. Individual patient records were allocated to training (80%), validation (10%), and testing (10%) datasets.
Results:
The AI model demonstrated 88% sensitivity and 92% specificity for predicting the treatment response. Significant factors independently associated with the antidepressant response included age, sex, history of depression, and baseline HAMD scores.
Conclusion
This AI-driven software application provides a clinically valuable tool for predicting treatment response.While promising, further research is needed to incorporate voice data into the AI model using the voice recording feature to further improve diagnostic accuracy.
8.Predicting Treatment Response to Antidepressants in Patients with Major Depressive Disorder Based on Longitudinal Clinical Data Using Artificial Intelligence:A Pilot Study
Junhee LEE ; Seung-Hwan BAEK ; Min-Kyung JANG ; Hyeon-Hee SIM ; In Young CHOI ; Dai-Jin KIM
Mood and Emotion 2024;22(3):63-68
Background:
The diagnosis of major depressive disorder (MDD) relies primarily on clinical interviews, which can be subjective and time consuming. Thus, there is a need for more objective diagnostic tools. The aim of this study was to develop an artificial intelligence (AI) application that predicts the antidepressant drug response of individual patients with MDD based on longitudinal data.
Methods:
Longitudinal data from patient records, including sex, age, outpatient or inpatient status, medication type and dosage, and the Hamilton Depression Rating Scale (HAMD) scores, were used to train the Transformer model and the 1-dimensional convolutional neural network model. Individual patient records were allocated to training (80%), validation (10%), and testing (10%) datasets.
Results:
The AI model demonstrated 88% sensitivity and 92% specificity for predicting the treatment response. Significant factors independently associated with the antidepressant response included age, sex, history of depression, and baseline HAMD scores.
Conclusion
This AI-driven software application provides a clinically valuable tool for predicting treatment response.While promising, further research is needed to incorporate voice data into the AI model using the voice recording feature to further improve diagnostic accuracy.
9.Predicting Treatment Response to Antidepressants in Patients with Major Depressive Disorder Based on Longitudinal Clinical Data Using Artificial Intelligence:A Pilot Study
Junhee LEE ; Seung-Hwan BAEK ; Min-Kyung JANG ; Hyeon-Hee SIM ; In Young CHOI ; Dai-Jin KIM
Mood and Emotion 2024;22(3):63-68
Background:
The diagnosis of major depressive disorder (MDD) relies primarily on clinical interviews, which can be subjective and time consuming. Thus, there is a need for more objective diagnostic tools. The aim of this study was to develop an artificial intelligence (AI) application that predicts the antidepressant drug response of individual patients with MDD based on longitudinal data.
Methods:
Longitudinal data from patient records, including sex, age, outpatient or inpatient status, medication type and dosage, and the Hamilton Depression Rating Scale (HAMD) scores, were used to train the Transformer model and the 1-dimensional convolutional neural network model. Individual patient records were allocated to training (80%), validation (10%), and testing (10%) datasets.
Results:
The AI model demonstrated 88% sensitivity and 92% specificity for predicting the treatment response. Significant factors independently associated with the antidepressant response included age, sex, history of depression, and baseline HAMD scores.
Conclusion
This AI-driven software application provides a clinically valuable tool for predicting treatment response.While promising, further research is needed to incorporate voice data into the AI model using the voice recording feature to further improve diagnostic accuracy.
10.Use of Artificial Intelligence in Diagnosis and Treatment of Psychiatric Disorders
Min Ji BAEK ; Kwon Chan ROH ; Dai Seg BAI ; Hee Jin KIM ; Wan Seok SEO
Journal of the Korean Society of Biological Therapies in Psychiatry 2024;30(1):1-8
Artificial intelligence (AI) is widely used as an auxiliary device to diagnosis and treat mental illness, and the scope of its use is gradually expanding. It is widely used as a tool to assist diagnosis in various fields such as radiology and ophthalmology. Meanwhile, in psychiatry, the use of AI has been limited so far due to the lack of a specific objective test for diagnosis and the reliability of medical records for sensitive records such as suicide attempts. However, AI can detect people’s behavior and facial expressions changes more sensitively and more accurately find the correlation between quantitative neurophysiological test results and behavior and emotions. Nowadays, AI is useful as an auxiliary tool in diagnosing not only pediatric and adolescent mental disorders such as attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD), but also affective disorders and psychotic disorders. AI is also actively used to treat insomnia, ASD, ADHD, cognitive dysfunction, depression, anxiety disorders, substance use disorders, and schizophrenia. Many psychiatrists are still cautious about the use of AI. There are concerns that AI cannot replace the doctorpatient relationship, which is the most important element of traditional psychotherapy. Nevertheless, AI can diagnose psychiatric disorders more accurately and can also be useful in improving patients’ symptoms and quality of life through AI or digital treatments. I hope that psychiatrists to contribute to the treatment of human mental illness by becoming users, supervisors, and monitors of AI.

Result Analysis
Print
Save
E-mail