1.Relationship between the Geriatric Nutrition Risk Index and the Prognosis of Severe Coronavirus Disease 2019 in Korea
Hye Ju YEO ; Daesup LEE ; Mose CHUN ; Jin Ho JANG ; Sunghoon PARK ; Su Hwan LEE ; Onyu PARK ; Tae Hwa KIM ; Woo Hyun CHO
Tuberculosis and Respiratory Diseases 2025;88(2):369-379
Background:
Malnutrition exacerbates the prognosis of numerous diseases; however, its specific impact on severe coronavirus disease 2019 (COVID-19) outcomes remains insufficiently explored.
Methods:
This multicenter study in Korea evaluated the nutritional status of 1,088 adults with severe COVID-19 using the Geriatric Nutritional Risk Index (GNRI) based on serum albumin levels and body weight. The patients were categorized into two groups: GNRI >98 (no-risk) and GNRI ≤98 (risk). Propensity score matching, adjusted for demographic and clinical variables, was conducted.
Results:
Of the 1,088 patients, 642 (59%) were classified as at risk of malnutrition. Propensity score matching revealed significant disparities in hospital (34.3% vs. 19.4%, p<0.001) and intensive care unit (ICU) mortality (31.5% vs. 18.9%, p<0.001) between the groups. The risk group was associated with a higher hospital mortality rate in the multivariate Cox regression analyses following propensity score adjustment (hazard ratio [HR], 1.64; p=0.001). Among the 670 elderly patients, 450 were at risk of malnutrition. Furthermore, the risk group demonstrated significantly higher hospital (52.1% vs. 29.5%, p<0.001) and ICU mortality rates (47.2% vs. 29.1%, p<0.001). The risk group was significantly associated with increased hospital mortality rates in the multivariate analyses following propensity score adjustment (HR, 1.66; p=0.001).
Conclusion
Malnutrition, as indicated by a low GNRI, was associated with increased mortality in patients with severe COVID-19. This effect was also observed in the elderly population. These findings underscore the critical importance of nutritional assessment and effective interventions for patients with severe COVID-19.
2.Relationship between the Geriatric Nutrition Risk Index and the Prognosis of Severe Coronavirus Disease 2019 in Korea
Hye Ju YEO ; Daesup LEE ; Mose CHUN ; Jin Ho JANG ; Sunghoon PARK ; Su Hwan LEE ; Onyu PARK ; Tae Hwa KIM ; Woo Hyun CHO
Tuberculosis and Respiratory Diseases 2025;88(2):369-379
Background:
Malnutrition exacerbates the prognosis of numerous diseases; however, its specific impact on severe coronavirus disease 2019 (COVID-19) outcomes remains insufficiently explored.
Methods:
This multicenter study in Korea evaluated the nutritional status of 1,088 adults with severe COVID-19 using the Geriatric Nutritional Risk Index (GNRI) based on serum albumin levels and body weight. The patients were categorized into two groups: GNRI >98 (no-risk) and GNRI ≤98 (risk). Propensity score matching, adjusted for demographic and clinical variables, was conducted.
Results:
Of the 1,088 patients, 642 (59%) were classified as at risk of malnutrition. Propensity score matching revealed significant disparities in hospital (34.3% vs. 19.4%, p<0.001) and intensive care unit (ICU) mortality (31.5% vs. 18.9%, p<0.001) between the groups. The risk group was associated with a higher hospital mortality rate in the multivariate Cox regression analyses following propensity score adjustment (hazard ratio [HR], 1.64; p=0.001). Among the 670 elderly patients, 450 were at risk of malnutrition. Furthermore, the risk group demonstrated significantly higher hospital (52.1% vs. 29.5%, p<0.001) and ICU mortality rates (47.2% vs. 29.1%, p<0.001). The risk group was significantly associated with increased hospital mortality rates in the multivariate analyses following propensity score adjustment (HR, 1.66; p=0.001).
Conclusion
Malnutrition, as indicated by a low GNRI, was associated with increased mortality in patients with severe COVID-19. This effect was also observed in the elderly population. These findings underscore the critical importance of nutritional assessment and effective interventions for patients with severe COVID-19.
3.Relationship between the Geriatric Nutrition Risk Index and the Prognosis of Severe Coronavirus Disease 2019 in Korea
Hye Ju YEO ; Daesup LEE ; Mose CHUN ; Jin Ho JANG ; Sunghoon PARK ; Su Hwan LEE ; Onyu PARK ; Tae Hwa KIM ; Woo Hyun CHO
Tuberculosis and Respiratory Diseases 2025;88(2):369-379
Background:
Malnutrition exacerbates the prognosis of numerous diseases; however, its specific impact on severe coronavirus disease 2019 (COVID-19) outcomes remains insufficiently explored.
Methods:
This multicenter study in Korea evaluated the nutritional status of 1,088 adults with severe COVID-19 using the Geriatric Nutritional Risk Index (GNRI) based on serum albumin levels and body weight. The patients were categorized into two groups: GNRI >98 (no-risk) and GNRI ≤98 (risk). Propensity score matching, adjusted for demographic and clinical variables, was conducted.
Results:
Of the 1,088 patients, 642 (59%) were classified as at risk of malnutrition. Propensity score matching revealed significant disparities in hospital (34.3% vs. 19.4%, p<0.001) and intensive care unit (ICU) mortality (31.5% vs. 18.9%, p<0.001) between the groups. The risk group was associated with a higher hospital mortality rate in the multivariate Cox regression analyses following propensity score adjustment (hazard ratio [HR], 1.64; p=0.001). Among the 670 elderly patients, 450 were at risk of malnutrition. Furthermore, the risk group demonstrated significantly higher hospital (52.1% vs. 29.5%, p<0.001) and ICU mortality rates (47.2% vs. 29.1%, p<0.001). The risk group was significantly associated with increased hospital mortality rates in the multivariate analyses following propensity score adjustment (HR, 1.66; p=0.001).
Conclusion
Malnutrition, as indicated by a low GNRI, was associated with increased mortality in patients with severe COVID-19. This effect was also observed in the elderly population. These findings underscore the critical importance of nutritional assessment and effective interventions for patients with severe COVID-19.
4.Development of a Machine LearningPowered Optimized Lung Allocation System for Maximum Benefits in Lung Transplantation: A Korean National Data
Mihyang HA ; Woo Hyun CHO ; Min Wook SO ; Daesup LEE ; Yun Hak KIM ; Hye Ju YEO
Journal of Korean Medical Science 2025;40(7):e18-
Background:
An ideal lung allocation system should reduce waiting list deaths, improve transplant survival, and ensure equitable organ allocation. This study aimed to develop a novel lung allocation score (LAS) system, the MaxBenefit LAS, to maximize transplant benefits.
Methods:
This study retrospectively analyzed data from the Korean Network for Organ Sharing database, including 1,599 lung transplant candidates between September 2009 and December 2020. We developed the MaxBenefit LAS, combining a waitlist mortality model and a post-transplant survival model using elastic-net Cox regression, was assessed using area under the curve (AUC) values and Uno’s C-index. Its performance was compared to the US LAS in an independent cohort.
Results:
The waitlist mortality model showed strong predictive performance with AUC values of 0.834 and 0.818 in the training and validation cohorts, respectively. The post-transplant survival model also demonstrated good predictive ability (AUC: 0.708 and 0.685). The MaxBenefit LAS effectively stratified patients by risk, with higher scores correlating with increased waitlist mortality and decreased post-transplant mortality. The MaxBenefit LAS outperformed the conventional LAS in predicting waitlist death and identifying candidates with higher transplant benefits.
Conclusion
The MaxBenefit LAS offers a promising approach to optimizing lung allocation by balancing the urgency of candidates with their likelihood of survival post-transplant. This novel system has the potential to improve outcomes for lung transplant recipients and reduce waitlist mortality, providing a more equitable allocation of donor lungs.
5.Development of a Machine LearningPowered Optimized Lung Allocation System for Maximum Benefits in Lung Transplantation: A Korean National Data
Mihyang HA ; Woo Hyun CHO ; Min Wook SO ; Daesup LEE ; Yun Hak KIM ; Hye Ju YEO
Journal of Korean Medical Science 2025;40(7):e18-
Background:
An ideal lung allocation system should reduce waiting list deaths, improve transplant survival, and ensure equitable organ allocation. This study aimed to develop a novel lung allocation score (LAS) system, the MaxBenefit LAS, to maximize transplant benefits.
Methods:
This study retrospectively analyzed data from the Korean Network for Organ Sharing database, including 1,599 lung transplant candidates between September 2009 and December 2020. We developed the MaxBenefit LAS, combining a waitlist mortality model and a post-transplant survival model using elastic-net Cox regression, was assessed using area under the curve (AUC) values and Uno’s C-index. Its performance was compared to the US LAS in an independent cohort.
Results:
The waitlist mortality model showed strong predictive performance with AUC values of 0.834 and 0.818 in the training and validation cohorts, respectively. The post-transplant survival model also demonstrated good predictive ability (AUC: 0.708 and 0.685). The MaxBenefit LAS effectively stratified patients by risk, with higher scores correlating with increased waitlist mortality and decreased post-transplant mortality. The MaxBenefit LAS outperformed the conventional LAS in predicting waitlist death and identifying candidates with higher transplant benefits.
Conclusion
The MaxBenefit LAS offers a promising approach to optimizing lung allocation by balancing the urgency of candidates with their likelihood of survival post-transplant. This novel system has the potential to improve outcomes for lung transplant recipients and reduce waitlist mortality, providing a more equitable allocation of donor lungs.
6.Development of a Machine LearningPowered Optimized Lung Allocation System for Maximum Benefits in Lung Transplantation: A Korean National Data
Mihyang HA ; Woo Hyun CHO ; Min Wook SO ; Daesup LEE ; Yun Hak KIM ; Hye Ju YEO
Journal of Korean Medical Science 2025;40(7):e18-
Background:
An ideal lung allocation system should reduce waiting list deaths, improve transplant survival, and ensure equitable organ allocation. This study aimed to develop a novel lung allocation score (LAS) system, the MaxBenefit LAS, to maximize transplant benefits.
Methods:
This study retrospectively analyzed data from the Korean Network for Organ Sharing database, including 1,599 lung transplant candidates between September 2009 and December 2020. We developed the MaxBenefit LAS, combining a waitlist mortality model and a post-transplant survival model using elastic-net Cox regression, was assessed using area under the curve (AUC) values and Uno’s C-index. Its performance was compared to the US LAS in an independent cohort.
Results:
The waitlist mortality model showed strong predictive performance with AUC values of 0.834 and 0.818 in the training and validation cohorts, respectively. The post-transplant survival model also demonstrated good predictive ability (AUC: 0.708 and 0.685). The MaxBenefit LAS effectively stratified patients by risk, with higher scores correlating with increased waitlist mortality and decreased post-transplant mortality. The MaxBenefit LAS outperformed the conventional LAS in predicting waitlist death and identifying candidates with higher transplant benefits.
Conclusion
The MaxBenefit LAS offers a promising approach to optimizing lung allocation by balancing the urgency of candidates with their likelihood of survival post-transplant. This novel system has the potential to improve outcomes for lung transplant recipients and reduce waitlist mortality, providing a more equitable allocation of donor lungs.
7.Relationship between the Geriatric Nutrition Risk Index and the Prognosis of Severe Coronavirus Disease 2019 in Korea
Hye Ju YEO ; Daesup LEE ; Mose CHUN ; Jin Ho JANG ; Sunghoon PARK ; Su Hwan LEE ; Onyu PARK ; Tae Hwa KIM ; Woo Hyun CHO
Tuberculosis and Respiratory Diseases 2025;88(2):369-379
Background:
Malnutrition exacerbates the prognosis of numerous diseases; however, its specific impact on severe coronavirus disease 2019 (COVID-19) outcomes remains insufficiently explored.
Methods:
This multicenter study in Korea evaluated the nutritional status of 1,088 adults with severe COVID-19 using the Geriatric Nutritional Risk Index (GNRI) based on serum albumin levels and body weight. The patients were categorized into two groups: GNRI >98 (no-risk) and GNRI ≤98 (risk). Propensity score matching, adjusted for demographic and clinical variables, was conducted.
Results:
Of the 1,088 patients, 642 (59%) were classified as at risk of malnutrition. Propensity score matching revealed significant disparities in hospital (34.3% vs. 19.4%, p<0.001) and intensive care unit (ICU) mortality (31.5% vs. 18.9%, p<0.001) between the groups. The risk group was associated with a higher hospital mortality rate in the multivariate Cox regression analyses following propensity score adjustment (hazard ratio [HR], 1.64; p=0.001). Among the 670 elderly patients, 450 were at risk of malnutrition. Furthermore, the risk group demonstrated significantly higher hospital (52.1% vs. 29.5%, p<0.001) and ICU mortality rates (47.2% vs. 29.1%, p<0.001). The risk group was significantly associated with increased hospital mortality rates in the multivariate analyses following propensity score adjustment (HR, 1.66; p=0.001).
Conclusion
Malnutrition, as indicated by a low GNRI, was associated with increased mortality in patients with severe COVID-19. This effect was also observed in the elderly population. These findings underscore the critical importance of nutritional assessment and effective interventions for patients with severe COVID-19.
8.Development of a Machine LearningPowered Optimized Lung Allocation System for Maximum Benefits in Lung Transplantation: A Korean National Data
Mihyang HA ; Woo Hyun CHO ; Min Wook SO ; Daesup LEE ; Yun Hak KIM ; Hye Ju YEO
Journal of Korean Medical Science 2025;40(7):e18-
Background:
An ideal lung allocation system should reduce waiting list deaths, improve transplant survival, and ensure equitable organ allocation. This study aimed to develop a novel lung allocation score (LAS) system, the MaxBenefit LAS, to maximize transplant benefits.
Methods:
This study retrospectively analyzed data from the Korean Network for Organ Sharing database, including 1,599 lung transplant candidates between September 2009 and December 2020. We developed the MaxBenefit LAS, combining a waitlist mortality model and a post-transplant survival model using elastic-net Cox regression, was assessed using area under the curve (AUC) values and Uno’s C-index. Its performance was compared to the US LAS in an independent cohort.
Results:
The waitlist mortality model showed strong predictive performance with AUC values of 0.834 and 0.818 in the training and validation cohorts, respectively. The post-transplant survival model also demonstrated good predictive ability (AUC: 0.708 and 0.685). The MaxBenefit LAS effectively stratified patients by risk, with higher scores correlating with increased waitlist mortality and decreased post-transplant mortality. The MaxBenefit LAS outperformed the conventional LAS in predicting waitlist death and identifying candidates with higher transplant benefits.
Conclusion
The MaxBenefit LAS offers a promising approach to optimizing lung allocation by balancing the urgency of candidates with their likelihood of survival post-transplant. This novel system has the potential to improve outcomes for lung transplant recipients and reduce waitlist mortality, providing a more equitable allocation of donor lungs.
9.Relationship between the Geriatric Nutrition Risk Index and the Prognosis of Severe Coronavirus Disease 2019 in Korea
Hye Ju YEO ; Daesup LEE ; Mose CHUN ; Jin Ho JANG ; Sunghoon PARK ; Su Hwan LEE ; Onyu PARK ; Tae Hwa KIM ; Woo Hyun CHO
Tuberculosis and Respiratory Diseases 2025;88(2):369-379
Background:
Malnutrition exacerbates the prognosis of numerous diseases; however, its specific impact on severe coronavirus disease 2019 (COVID-19) outcomes remains insufficiently explored.
Methods:
This multicenter study in Korea evaluated the nutritional status of 1,088 adults with severe COVID-19 using the Geriatric Nutritional Risk Index (GNRI) based on serum albumin levels and body weight. The patients were categorized into two groups: GNRI >98 (no-risk) and GNRI ≤98 (risk). Propensity score matching, adjusted for demographic and clinical variables, was conducted.
Results:
Of the 1,088 patients, 642 (59%) were classified as at risk of malnutrition. Propensity score matching revealed significant disparities in hospital (34.3% vs. 19.4%, p<0.001) and intensive care unit (ICU) mortality (31.5% vs. 18.9%, p<0.001) between the groups. The risk group was associated with a higher hospital mortality rate in the multivariate Cox regression analyses following propensity score adjustment (hazard ratio [HR], 1.64; p=0.001). Among the 670 elderly patients, 450 were at risk of malnutrition. Furthermore, the risk group demonstrated significantly higher hospital (52.1% vs. 29.5%, p<0.001) and ICU mortality rates (47.2% vs. 29.1%, p<0.001). The risk group was significantly associated with increased hospital mortality rates in the multivariate analyses following propensity score adjustment (HR, 1.66; p=0.001).
Conclusion
Malnutrition, as indicated by a low GNRI, was associated with increased mortality in patients with severe COVID-19. This effect was also observed in the elderly population. These findings underscore the critical importance of nutritional assessment and effective interventions for patients with severe COVID-19.
10.Impact of emergency room occupancy on the timing of antibiotic administration in patients with septic shock who visited the emergency room
Taek Kyu NAM ; Ji Ho RYU ; Mun ki MIN ; Daesup LEE ; Mose CHUN ; Seung Woo SON ; Yang Wook TAE ; Minjee LEE
Journal of the Korean Society of Emergency Medicine 2024;35(3):212-222
Objective:
The emergency department (ED) serves as the initial point of contact for many sepsis patients, but crowding can affect the timely delivery of essential interventions, such as antibiotics. This paper explores the relationship between antibiotics administration and ED crowding in the context of sepsis management.
Methods:
This single-center study at a tertiary care hospital included adult patients aged 18 and above who visited the emergency department from January 2018 to December 2022. Patients showing signs of septic shock upon arrival were selected as the study population. This study examined factors such as emergency department occupancy, antibiotic administration time, and their correlation with timely antibiotic treatment.
Results:
This study of 839 adult patients with septic shock found a weak correlation (P=0.107) between the time to antibiotic administration and department occupancy. Delayed antibiotic administration was observed when the occupancy exceeded 100%. On the other hand, there was no significant correlation between antibiotic administration within one hour and department occupancy.
Conclusion
Various factors, such as ED bed occupancy, medical staffing, resource allocation, and patient acuity, must be considered when comprehensively evaluating the impact of ED overcrowding on treating septic shock and other conditions.

Result Analysis
Print
Save
E-mail