1.Exercise improves muscle mitochondrial dysfunction-associated lipid profile under circadian rhythm disturbance
Yu GU ; Dong-Hun SEONG ; Wenduo LIU ; Zilin WANG ; Yong Whi JEONG ; Jae-Cheol KIM ; Dae Ryong KANG ; Rose Ji Eun LEE ; Jin-Ho KOH ; Sang Hyun KIM
The Korean Journal of Physiology and Pharmacology 2024;28(6):515-526
We investigated whether endurance exercise training (EXT) ameliorates circadian rhythm (CR)-induced risk factors by improving skeletal muscle (SKM) mitochondrial biogenesis, reducing oxidative stress, and modulating apoptotic protein expression. We distinguished between regular and shift workers using the National Health and Nutrition Examination Survey (NHANES) and investigated the health problems caused by shift work (CR disturbance) and the potential therapeutic effects of exercise. In our animal study, 36 rats underwent 12 weeks of CR disturbance, divided into regular and irregular CR groups. These groups were further split into EXT (n = 12) and sedentary (n = 12) for an additional 8 weeks. We analyzed SKM tissue to understand the molecular changes induced by CR and EXT. NHANES data were analyzed using SAS 9.4 and Prism 8 software, while experimental animal data were analyzed using Prism 8 software. The statistical procedures used in each experiment are indicated in the figure legends. Our studies showed that CR disturbance increases dyslipidemia, alters circadian clock proteins (BMAL1, PER2), raises apoptotic protein levels, and reduces mitochondrial biogenesis in SKM. EXT improved LDL-C and HDLC levels without affecting muscle BMAL1 expression. It also enhanced mitochondrial biogenesis (AMPK, PGC-1α, Tfam, NADH-UO, COX-I), antioxidant levels (Catalase, SOD1, SOD2), and apoptotic protein (p53, Bax/Bcl2) expression or activity in SKM. We demonstrated that shift work-induced CR disturbance leads to dyslipidemia, diminished mitochondrial biogenesis, and reduced antioxidant capacity in SKM. However, EXT can counteract dyslipidemia under CR disturbance, potentially lowering the risk of cardiovascular disorders.
2.Exercise improves muscle mitochondrial dysfunction-associated lipid profile under circadian rhythm disturbance
Yu GU ; Dong-Hun SEONG ; Wenduo LIU ; Zilin WANG ; Yong Whi JEONG ; Jae-Cheol KIM ; Dae Ryong KANG ; Rose Ji Eun LEE ; Jin-Ho KOH ; Sang Hyun KIM
The Korean Journal of Physiology and Pharmacology 2024;28(6):515-526
We investigated whether endurance exercise training (EXT) ameliorates circadian rhythm (CR)-induced risk factors by improving skeletal muscle (SKM) mitochondrial biogenesis, reducing oxidative stress, and modulating apoptotic protein expression. We distinguished between regular and shift workers using the National Health and Nutrition Examination Survey (NHANES) and investigated the health problems caused by shift work (CR disturbance) and the potential therapeutic effects of exercise. In our animal study, 36 rats underwent 12 weeks of CR disturbance, divided into regular and irregular CR groups. These groups were further split into EXT (n = 12) and sedentary (n = 12) for an additional 8 weeks. We analyzed SKM tissue to understand the molecular changes induced by CR and EXT. NHANES data were analyzed using SAS 9.4 and Prism 8 software, while experimental animal data were analyzed using Prism 8 software. The statistical procedures used in each experiment are indicated in the figure legends. Our studies showed that CR disturbance increases dyslipidemia, alters circadian clock proteins (BMAL1, PER2), raises apoptotic protein levels, and reduces mitochondrial biogenesis in SKM. EXT improved LDL-C and HDLC levels without affecting muscle BMAL1 expression. It also enhanced mitochondrial biogenesis (AMPK, PGC-1α, Tfam, NADH-UO, COX-I), antioxidant levels (Catalase, SOD1, SOD2), and apoptotic protein (p53, Bax/Bcl2) expression or activity in SKM. We demonstrated that shift work-induced CR disturbance leads to dyslipidemia, diminished mitochondrial biogenesis, and reduced antioxidant capacity in SKM. However, EXT can counteract dyslipidemia under CR disturbance, potentially lowering the risk of cardiovascular disorders.
3.Exercise improves muscle mitochondrial dysfunction-associated lipid profile under circadian rhythm disturbance
Yu GU ; Dong-Hun SEONG ; Wenduo LIU ; Zilin WANG ; Yong Whi JEONG ; Jae-Cheol KIM ; Dae Ryong KANG ; Rose Ji Eun LEE ; Jin-Ho KOH ; Sang Hyun KIM
The Korean Journal of Physiology and Pharmacology 2024;28(6):515-526
We investigated whether endurance exercise training (EXT) ameliorates circadian rhythm (CR)-induced risk factors by improving skeletal muscle (SKM) mitochondrial biogenesis, reducing oxidative stress, and modulating apoptotic protein expression. We distinguished between regular and shift workers using the National Health and Nutrition Examination Survey (NHANES) and investigated the health problems caused by shift work (CR disturbance) and the potential therapeutic effects of exercise. In our animal study, 36 rats underwent 12 weeks of CR disturbance, divided into regular and irregular CR groups. These groups were further split into EXT (n = 12) and sedentary (n = 12) for an additional 8 weeks. We analyzed SKM tissue to understand the molecular changes induced by CR and EXT. NHANES data were analyzed using SAS 9.4 and Prism 8 software, while experimental animal data were analyzed using Prism 8 software. The statistical procedures used in each experiment are indicated in the figure legends. Our studies showed that CR disturbance increases dyslipidemia, alters circadian clock proteins (BMAL1, PER2), raises apoptotic protein levels, and reduces mitochondrial biogenesis in SKM. EXT improved LDL-C and HDLC levels without affecting muscle BMAL1 expression. It also enhanced mitochondrial biogenesis (AMPK, PGC-1α, Tfam, NADH-UO, COX-I), antioxidant levels (Catalase, SOD1, SOD2), and apoptotic protein (p53, Bax/Bcl2) expression or activity in SKM. We demonstrated that shift work-induced CR disturbance leads to dyslipidemia, diminished mitochondrial biogenesis, and reduced antioxidant capacity in SKM. However, EXT can counteract dyslipidemia under CR disturbance, potentially lowering the risk of cardiovascular disorders.
4.Exercise improves muscle mitochondrial dysfunction-associated lipid profile under circadian rhythm disturbance
Yu GU ; Dong-Hun SEONG ; Wenduo LIU ; Zilin WANG ; Yong Whi JEONG ; Jae-Cheol KIM ; Dae Ryong KANG ; Rose Ji Eun LEE ; Jin-Ho KOH ; Sang Hyun KIM
The Korean Journal of Physiology and Pharmacology 2024;28(6):515-526
We investigated whether endurance exercise training (EXT) ameliorates circadian rhythm (CR)-induced risk factors by improving skeletal muscle (SKM) mitochondrial biogenesis, reducing oxidative stress, and modulating apoptotic protein expression. We distinguished between regular and shift workers using the National Health and Nutrition Examination Survey (NHANES) and investigated the health problems caused by shift work (CR disturbance) and the potential therapeutic effects of exercise. In our animal study, 36 rats underwent 12 weeks of CR disturbance, divided into regular and irregular CR groups. These groups were further split into EXT (n = 12) and sedentary (n = 12) for an additional 8 weeks. We analyzed SKM tissue to understand the molecular changes induced by CR and EXT. NHANES data were analyzed using SAS 9.4 and Prism 8 software, while experimental animal data were analyzed using Prism 8 software. The statistical procedures used in each experiment are indicated in the figure legends. Our studies showed that CR disturbance increases dyslipidemia, alters circadian clock proteins (BMAL1, PER2), raises apoptotic protein levels, and reduces mitochondrial biogenesis in SKM. EXT improved LDL-C and HDLC levels without affecting muscle BMAL1 expression. It also enhanced mitochondrial biogenesis (AMPK, PGC-1α, Tfam, NADH-UO, COX-I), antioxidant levels (Catalase, SOD1, SOD2), and apoptotic protein (p53, Bax/Bcl2) expression or activity in SKM. We demonstrated that shift work-induced CR disturbance leads to dyslipidemia, diminished mitochondrial biogenesis, and reduced antioxidant capacity in SKM. However, EXT can counteract dyslipidemia under CR disturbance, potentially lowering the risk of cardiovascular disorders.
5.Exercise improves muscle mitochondrial dysfunction-associated lipid profile under circadian rhythm disturbance
Yu GU ; Dong-Hun SEONG ; Wenduo LIU ; Zilin WANG ; Yong Whi JEONG ; Jae-Cheol KIM ; Dae Ryong KANG ; Rose Ji Eun LEE ; Jin-Ho KOH ; Sang Hyun KIM
The Korean Journal of Physiology and Pharmacology 2024;28(6):515-526
We investigated whether endurance exercise training (EXT) ameliorates circadian rhythm (CR)-induced risk factors by improving skeletal muscle (SKM) mitochondrial biogenesis, reducing oxidative stress, and modulating apoptotic protein expression. We distinguished between regular and shift workers using the National Health and Nutrition Examination Survey (NHANES) and investigated the health problems caused by shift work (CR disturbance) and the potential therapeutic effects of exercise. In our animal study, 36 rats underwent 12 weeks of CR disturbance, divided into regular and irregular CR groups. These groups were further split into EXT (n = 12) and sedentary (n = 12) for an additional 8 weeks. We analyzed SKM tissue to understand the molecular changes induced by CR and EXT. NHANES data were analyzed using SAS 9.4 and Prism 8 software, while experimental animal data were analyzed using Prism 8 software. The statistical procedures used in each experiment are indicated in the figure legends. Our studies showed that CR disturbance increases dyslipidemia, alters circadian clock proteins (BMAL1, PER2), raises apoptotic protein levels, and reduces mitochondrial biogenesis in SKM. EXT improved LDL-C and HDLC levels without affecting muscle BMAL1 expression. It also enhanced mitochondrial biogenesis (AMPK, PGC-1α, Tfam, NADH-UO, COX-I), antioxidant levels (Catalase, SOD1, SOD2), and apoptotic protein (p53, Bax/Bcl2) expression or activity in SKM. We demonstrated that shift work-induced CR disturbance leads to dyslipidemia, diminished mitochondrial biogenesis, and reduced antioxidant capacity in SKM. However, EXT can counteract dyslipidemia under CR disturbance, potentially lowering the risk of cardiovascular disorders.
7.Multifocal Peripheral Neuropathies, Rhabdomyolysis, and Dermal Change in Carbon Monoxide Intoxication
Dae Wang JEONG ; Dasom YOON ; Jeong Kyu LEE ; Kyoung Mi LEE ; Yongsung SUH ; Young Hee JUNG
Journal of the Korean Neurological Association 2023;41(3):195-199
Carbon monoxide poisoning is common cause of fatal intoxication. When carbon monoxide is absorbed into the blood, it interferes with the oxygen supply to the cells, causing damage to tissues and organs. Delayed neuropsychiatric sequelae (DNS) manifested by cognitive dysfunction, motor disorder, micturition disorder are widely known complication of carbon monoxide intoxication. But neuromuscular complication is a rare DNS of carbon monoxide intoxication. We herein report a 42-year-old patient with multifocal neuropathies, rhabdomyolysis, and dermal change due to carbon monoxide intoxication.
10.Asian Society of Gynecologic Oncology International Workshop 2018
Tae Wook KONG ; Hee Sug RYU ; Seung Cheol KIM ; Takayuki ENOMOTO ; Jin LI ; Kenneth H KIM ; Seung Hyuk SHIM ; Peng Hui WANG ; Suwanit THERASAKVICHYA ; Yusuke KOBAYASHI ; Maria LEE ; Tingyan SHI ; Shin Wha LEE ; Mikio MIKAMI ; Satoru NAGASE ; Myong Cheol LIM ; Jianliu WANG ; Sarikapan WILAILAK ; Sang Wun KIM ; Sook Hee HONG ; David SP TAN ; Masaki MANDAI ; Suk Joon CHANG ; Ruby Yun Ju HUANG ; Kimio USHIJIMA ; Jung Yun LEE ; Xiaojun CHEN ; Kazunori OCHIAI ; Taek Sang LEE ; Bingyi YANG ; Farhana KALAM ; Qiaoying LV ; Mohd Faizal AHMAD ; Muhammad Rizki YAZNIL ; Kanika Batra MODI ; Manatsawee MANOPUNYA ; Dae Hoon JEONG ; Arb aroon LERTKHACHONSUK ; Hyun Hoon CHUNG ; Hidemichi WATARI ; Seob JEON
Journal of Gynecologic Oncology 2019;30(2):e39-
The Asian Society of Gynecologic Oncology International Workshop 2018 on gynecologic oncology was held in the Ajou University Hospital, Suwon, Korea on the 24th to 25th August 2018. The workshop was an opportunity for Asian doctors to discuss the latest findings of gynecologic cancer, including cervical, ovarian, and endometrial cancers, as well as the future of fertility-sparing treatments, minimally invasive/radical/debulking surgery, radiotherapy, chemotherapy, targeted therapy, and immunotherapy. Clinical guidelines and position statement of Asian countries were presented by experts. Asian clinical trials for gynecologic cancers were reviewed and experts emphasized the point that original Asian study is beneficial for Asian patients. In Junior session, young gynecologic oncologists presented their latest research on gynecologic cancers.
Antineoplastic Agents
;
Asian Continental Ancestry Group
;
Drug Therapy
;
Education
;
Endometrial Neoplasms
;
Female
;
Gyeonggi-do
;
Humans
;
Immunotherapy
;
Korea
;
Ovarian Neoplasms
;
Radiotherapy
;
Uterine Cervical Neoplasms

Result Analysis
Print
Save
E-mail