1.Characteristics and Prevalence of Sequelae after COVID-19: A Longitudinal Cohort Study
Se Ju LEE ; Yae Jee BAEK ; Su Hwan LEE ; Jung Ho KIM ; Jin Young AHN ; Jooyun KIM ; Ji Hoon JEON ; Hyeri SEOK ; Won Suk CHOI ; Dae Won PARK ; Yunsang CHOI ; Kyoung-Ho SONG ; Eu Suk KIM ; Hong Bin KIM ; Jae-Hoon KO ; Kyong Ran PECK ; Jae-Phil CHOI ; Jun Hyoung KIM ; Hee-Sung KIM ; Hye Won JEONG ; Jun Yong CHOI
Infection and Chemotherapy 2025;57(1):72-80
Background:
The World Health Organization has declared the end of the coronavirus disease 2019 (COVID-19) public health emergency. However, this did not indicate the end of COVID-19. Several months after the infection, numerous patients complain of respiratory or nonspecific symptoms; this condition is called long COVID. Even patients with mild COVID-19 can experience long COVID, thus the burden of long COVID remains considerable. Therefore, we conducted this study to comprehensively analyze the effects of long COVID using multi-faceted assessments.
Materials and Methods:
We conducted a prospective cohort study involving patients diagnosed with COVID-19 between February 2020 and September 2021 in six tertiary hospitals in Korea. Patients were followed up at 1, 3, 6, 12, 18, and 24 months after discharge. Long COVID was defined as the persistence of three or more COVID-19-related symptoms. The primary outcome of this study was the prevalence of long COVID after the period of COVID-19.
Results:
During the study period, 290 patients were enrolled. Among them, 54.5 and 34.6% experienced long COVID within 6 months and after more than 18 months, respectively. Several patients showed abnormal results when tested for post-traumatic stress disorder (17.4%) and anxiety (31.9%) after 18 months. In patients who underwent follow-up chest computed tomography 18 months after COVID-19, abnormal findings remained at 51.9%. Males (odds ratio [OR], 0.17; 95% confidence interval [CI], 0.05–0.53; P=0.004) and elderly (OR, 1.04; 95% CI, 1.00–1.09; P=0.04) showed a significant association with long COVID after 12–18 months in a multivariable logistic regression analysis.
Conclusion
Many patients still showed long COVID after 18 months post SARS-CoV-2 infection. When managing these patients, the assessment of multiple aspects is necessary.
2.Characteristics and Prevalence of Sequelae after COVID-19: A Longitudinal Cohort Study
Se Ju LEE ; Yae Jee BAEK ; Su Hwan LEE ; Jung Ho KIM ; Jin Young AHN ; Jooyun KIM ; Ji Hoon JEON ; Hyeri SEOK ; Won Suk CHOI ; Dae Won PARK ; Yunsang CHOI ; Kyoung-Ho SONG ; Eu Suk KIM ; Hong Bin KIM ; Jae-Hoon KO ; Kyong Ran PECK ; Jae-Phil CHOI ; Jun Hyoung KIM ; Hee-Sung KIM ; Hye Won JEONG ; Jun Yong CHOI
Infection and Chemotherapy 2025;57(1):72-80
Background:
The World Health Organization has declared the end of the coronavirus disease 2019 (COVID-19) public health emergency. However, this did not indicate the end of COVID-19. Several months after the infection, numerous patients complain of respiratory or nonspecific symptoms; this condition is called long COVID. Even patients with mild COVID-19 can experience long COVID, thus the burden of long COVID remains considerable. Therefore, we conducted this study to comprehensively analyze the effects of long COVID using multi-faceted assessments.
Materials and Methods:
We conducted a prospective cohort study involving patients diagnosed with COVID-19 between February 2020 and September 2021 in six tertiary hospitals in Korea. Patients were followed up at 1, 3, 6, 12, 18, and 24 months after discharge. Long COVID was defined as the persistence of three or more COVID-19-related symptoms. The primary outcome of this study was the prevalence of long COVID after the period of COVID-19.
Results:
During the study period, 290 patients were enrolled. Among them, 54.5 and 34.6% experienced long COVID within 6 months and after more than 18 months, respectively. Several patients showed abnormal results when tested for post-traumatic stress disorder (17.4%) and anxiety (31.9%) after 18 months. In patients who underwent follow-up chest computed tomography 18 months after COVID-19, abnormal findings remained at 51.9%. Males (odds ratio [OR], 0.17; 95% confidence interval [CI], 0.05–0.53; P=0.004) and elderly (OR, 1.04; 95% CI, 1.00–1.09; P=0.04) showed a significant association with long COVID after 12–18 months in a multivariable logistic regression analysis.
Conclusion
Many patients still showed long COVID after 18 months post SARS-CoV-2 infection. When managing these patients, the assessment of multiple aspects is necessary.
3.Characteristics and Prevalence of Sequelae after COVID-19: A Longitudinal Cohort Study
Se Ju LEE ; Yae Jee BAEK ; Su Hwan LEE ; Jung Ho KIM ; Jin Young AHN ; Jooyun KIM ; Ji Hoon JEON ; Hyeri SEOK ; Won Suk CHOI ; Dae Won PARK ; Yunsang CHOI ; Kyoung-Ho SONG ; Eu Suk KIM ; Hong Bin KIM ; Jae-Hoon KO ; Kyong Ran PECK ; Jae-Phil CHOI ; Jun Hyoung KIM ; Hee-Sung KIM ; Hye Won JEONG ; Jun Yong CHOI
Infection and Chemotherapy 2025;57(1):72-80
Background:
The World Health Organization has declared the end of the coronavirus disease 2019 (COVID-19) public health emergency. However, this did not indicate the end of COVID-19. Several months after the infection, numerous patients complain of respiratory or nonspecific symptoms; this condition is called long COVID. Even patients with mild COVID-19 can experience long COVID, thus the burden of long COVID remains considerable. Therefore, we conducted this study to comprehensively analyze the effects of long COVID using multi-faceted assessments.
Materials and Methods:
We conducted a prospective cohort study involving patients diagnosed with COVID-19 between February 2020 and September 2021 in six tertiary hospitals in Korea. Patients were followed up at 1, 3, 6, 12, 18, and 24 months after discharge. Long COVID was defined as the persistence of three or more COVID-19-related symptoms. The primary outcome of this study was the prevalence of long COVID after the period of COVID-19.
Results:
During the study period, 290 patients were enrolled. Among them, 54.5 and 34.6% experienced long COVID within 6 months and after more than 18 months, respectively. Several patients showed abnormal results when tested for post-traumatic stress disorder (17.4%) and anxiety (31.9%) after 18 months. In patients who underwent follow-up chest computed tomography 18 months after COVID-19, abnormal findings remained at 51.9%. Males (odds ratio [OR], 0.17; 95% confidence interval [CI], 0.05–0.53; P=0.004) and elderly (OR, 1.04; 95% CI, 1.00–1.09; P=0.04) showed a significant association with long COVID after 12–18 months in a multivariable logistic regression analysis.
Conclusion
Many patients still showed long COVID after 18 months post SARS-CoV-2 infection. When managing these patients, the assessment of multiple aspects is necessary.
4.Training ultrasound-guided percutaneous nephrostomy technique with porcine model
Jae Yong JEONG ; Dae Young JUN ; Young Joon MOON ; Dong Hyuk KANG ; Hae Do JUNG ; Seung Hyun JEON ; Joo Yong LEE
Investigative and Clinical Urology 2024;65(1):62-68
Purpose:
There is increasing interest in the use of ultrasound for endoscopic and percutaneous procedures. Access can be achieved without radiation exposure under ultrasound guidance. Our aim was to develop a porcine-based training model for ultrasound-guided percutaneous renal access that could also be personalized to a specific patient.
Materials and Methods:
The Institutional Animal Care and Use Committee of Severance Hospital approved the study protocol. An anesthetized pig was placed in the dorsal lithotomy position. For the nephrostomy puncture, a Chiba biopsy needle with an echo tip was used under ultrasound guidance. Eight residents and three consultants in urology participated. Puncture time was defined as the nephrostomy time to confirm the flow of irrigation via the needle. After training, satisfaction survey results for clinical usability and procedural difficulty were evaluated.
Results:
The 5-point Likert scale satisfaction survey for clinical usability and procedural difficulty found mean results of 4.64 and 4.09 points, respectively. There were no differences between residents and consultants for either variable. For all participants combined, there was a significant difference for nephrostomy time between the first and second trials (278.8±70.6 s vs. 244.5±47.0 s;p=0.007). The between-trial difference was greater for residents (291.5±71.2 s vs. 259.1±41.9 s; p=0.039). The difference for the consultant was not significant (245.0±69.4 s vs. 205.7±42.5 s; p=0.250).
Conclusions
We developed a porcine-based ultrasound-guided nephrostomy puncture training model. Satisfaction survey results indicated high clinical usability and procedural difficulty. For nephrostomy time, the model was more effective for urology residents than for consultants.
5.Learning curve analysis for hand-assisted laparoscopic living donor nephrectomy: an analysis of 96 consecutive cases performed by a trained gastrointestinal surgeon
Chang In CHOI ; Kyeong Jun LEE ; Min Joo KIM ; Jae-Kyun PARK ; Da Woon KIM ; Hyo Jin KIM ; Harin RHEE ; Sang Heon SONG ; Eun Young SEONG ; Dae-Hwan KIM ; Tae Yong JEON ; Hyuk Jae JUNG
Annals of Surgical Treatment and Research 2024;107(2):81-90
Purpose:
This study aims to analyze the learning curve of hand-assisted laparoscopic living donor nephrectomy (HLDN) conducted by a trained gastrointestinal surgeon.
Methods:
A retrospective analysis was performed on the perioperative clinical data of 96 consecutive patients who underwent HLDN from May 2013 to March 2023. The learning curve was evaluated using the cumulative sum (CUSUM) test based on operation time and risk-adjusted CUSUM for postoperative complications. Patients were divided into three groups (novice, development, and competency phases) based on changes in operation time. Patient demographics and perioperative outcomes were compared between each group.
Results:
Among the patients, 35 were male, with a mean age of 48.9 ± 11.3 years and a mean body mass index (BMI) of 24.5 ± 3.2 kg/m 2 . The novice phase (phase 1) included the first 30 cases, with the development phase (phase 2) up to the 65th case. Operation times were significantly different across phases, averaging 263.2 ± 33.4, 211.1 ± 34.4, and 161.1 ± 31.3 minutes for phases 1, 2, and 3, respectively (P < 0.001). Blood loss decreased gradually across phases (phase 1, 264.7 ± 144.4 mL; phase 2, 239.7 ± 166.3 mL; phase 3, 198.8 ± 103.5 mL), though not statistically significant. BMI impacted operation time only in phase 1. Overall postoperative complications occurred in 13 cases (Clavien-Dindo grade I, 4 cases;grade II, 9 cases), with no significant differences across phases.
Conclusion
HLDN can be safely performed by a trained gastrointestinal surgeon, with approximately 30 cases needed to achieve proficiency.
6.2023 Clinical Practice Guidelines for Diabetes Management in Korea: Full Version Recommendation of the Korean Diabetes Association
Jun Sung MOON ; Shinae KANG ; Jong Han CHOI ; Kyung Ae LEE ; Joon Ho MOON ; Suk CHON ; Dae Jung KIM ; Hyun Jin KIM ; Ji A SEO ; Mee Kyoung KIM ; Jeong Hyun LIM ; Yoon Ju SONG ; Ye Seul YANG ; Jae Hyeon KIM ; You-Bin LEE ; Junghyun NOH ; Kyu Yeon HUR ; Jong Suk PARK ; Sang Youl RHEE ; Hae Jin KIM ; Hyun Min KIM ; Jung Hae KO ; Nam Hoon KIM ; Chong Hwa KIM ; Jeeyun AHN ; Tae Jung OH ; Soo-Kyung KIM ; Jaehyun KIM ; Eugene HAN ; Sang-Man JIN ; Jaehyun BAE ; Eonju JEON ; Ji Min KIM ; Seon Mee KANG ; Jung Hwan PARK ; Jae-Seung YUN ; Bong-Soo CHA ; Min Kyong MOON ; Byung-Wan LEE
Diabetes & Metabolism Journal 2024;48(4):546-708
7.Immune Cells Are DifferentiallyAffected by SARS-CoV-2 Viral Loads in K18-hACE2 Mice
Jung Ah KIM ; Sung-Hee KIM ; Jeong Jin KIM ; Hyuna NOH ; Su-bin LEE ; Haengdueng JEONG ; Jiseon KIM ; Donghun JEON ; Jung Seon SEO ; Dain ON ; Suhyeon YOON ; Sang Gyu LEE ; Youn Woo LEE ; Hui Jeong JANG ; In Ho PARK ; Jooyeon OH ; Sang-Hyuk SEOK ; Yu Jin LEE ; Seung-Min HONG ; Se-Hee AN ; Joon-Yong BAE ; Jung-ah CHOI ; Seo Yeon KIM ; Young Been KIM ; Ji-Yeon HWANG ; Hyo-Jung LEE ; Hong Bin KIM ; Dae Gwin JEONG ; Daesub SONG ; Manki SONG ; Man-Seong PARK ; Kang-Seuk CHOI ; Jun Won PARK ; Jun-Won YUN ; Jeon-Soo SHIN ; Ho-Young LEE ; Ho-Keun KWON ; Jun-Young SEO ; Ki Taek NAM ; Heon Yung GEE ; Je Kyung SEONG
Immune Network 2024;24(2):e7-
Viral load and the duration of viral shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important determinants of the transmission of coronavirus disease 2019.In this study, we examined the effects of viral doses on the lung and spleen of K18-hACE2 transgenic mice by temporal histological and transcriptional analyses. Approximately, 1×105 plaque-forming units (PFU) of SARS-CoV-2 induced strong host responses in the lungs from 2 days post inoculation (dpi) which did not recover until the mice died, whereas responses to the virus were obvious at 5 days, recovering to the basal state by 14 dpi at 1×102 PFU. Further, flow cytometry showed that number of CD8+ T cells continuously increased in 1×102 PFU-virusinfected lungs from 2 dpi, but not in 1×105 PFU-virus-infected lungs. In spleens, responses to the virus were prominent from 2 dpi, and number of B cells was significantly decreased at 1×105PFU; however, 1×102 PFU of virus induced very weak responses from 2 dpi which recovered by 10 dpi. Although the defense responses returned to normal and the mice survived, lung histology showed evidence of fibrosis, suggesting sequelae of SARS-CoV-2 infection. Our findings indicate that specific effectors of the immune response in the lung and spleen were either increased or depleted in response to doses of SARS-CoV-2. This study demonstrated that the response of local and systemic immune effectors to a viral infection varies with viral dose, which either exacerbates the severity of the infection or accelerates its elimination.
8.First-Pass Recanalization with EmboTrap II in Acute Ischemic Stroke (FREE-AIS): A Multicenter Prospective Study
Jang-Hyun BAEK ; Byung Moon KIM ; Sang Hyun SUH ; Hong-Jun JEON ; Eun Hyun IHM ; Hyungjong PARK ; Chang-Hyun KIM ; Sang-Hoon CHA ; Chi-Hoon CHOI ; Kyung Sik YI ; Jun-Hwee KIM ; Sangil SUH ; Byungjun KIM ; Yoonkyung CHANG ; So Yeon KIM ; Jae Sang OH ; Ji Hoe HEO ; Dong Joon KIM ; Hyo Suk NAM ; Young Dae KIM
Korean Journal of Radiology 2023;24(2):145-154
Objective:
We aimed to evaluate the efficacy of EmboTrap II in terms of first-pass recanalization and to determine whether it could yield favorable outcomes.
Materials and Methods:
In this multicenter, prospective study, we consecutively enrolled patients who underwent mechanical thrombectomy using EmboTrap II as a front-line device. The primary outcome was the first pass effect (FPE) rate defined by modified Thrombolysis In Cerebral Infarction (mTICI) grade 2c or 3 by the first pass of EmboTrap II. In addition, modified FPE (mFPE; mTICI grade 2b–3 by the first pass of EmboTrap II), successful recanalization (final mTICI grade 2b–3), and clinical outcomes were assessed. We also analyzed the effect of FPE on a modified Rankin Scale (mRS) score of 0–2 at 3 months.
Results:
Two hundred-ten patients (mean age ± standard deviation, 73.3 ± 11.4 years; male, 55.7%) were included. Ninetynine patients (47.1%) had FPE, and mFPE was achieved in 150 (71.4%) patients. Successful recanalization was achieved in 191 (91.0%) patients. Among them, 164 (85.9%) patients underwent successful recanalization by exclusively using EmboTrap II. The time from groin puncture to FPE was 25.0 minutes (interquartile range, 17.0–35.0 minutes). Procedure-related complications were observed in seven (3.3%) patients. Symptomatic intracranial hemorrhage developed in 14 (6.7%) patients. One hundred twenty-three (58.9% of 209 completely followed) patients had an mRS score of 0–2. Sixteen (7.7% of 209) patients died during the follow-up period. Patients who had successful recanalization with FPE were four times more likely to have an mRS score of 0–2 than those who had successful recanalization without FPE (adjusted odds ratio, 4.13;95% confidence interval, 1.59–10.8; p = 0.004).
Conclusion
Mechanical thrombectomy using the front-line EmboTrap II is effective and safe. In particular, FPE rates were high. Achieving FPE was important for an mRS score of 0–2, even in patients with successful recanalization.
9.Two Clinical Cases of Feline Hemoplasmosis in Korea
Young Ju KIM ; Hyeona BAE ; Sun Woo SHIN ; ARom CHO ; Yeseul JEON ; Tae-Sung HWANG ; Dong-In JUNG ; Dae Young KIM ; Jun-Gu KANG ; DoHyeon YU
The Korean Journal of Parasitology 2022;60(2):127-131
Feline hemotropic mycoplasmosis (hemoplasmosis) is an infection of the red blood cells caused by the Mycoplasma haemofelis (Mhf), Candidatus Mycoplasma haemominutum (CMhm), and Candidatus Mycoplasma turicensis (CMt). The existence of Mhf, CMhm, and CMt has been demonstrated in feral cats in Korea using molecular methods, but no clinical cases have yet been reported. This study reports 2 clinical cases of hemotropic mycoplasmosis caused by CMhm and CMt in 2 anemic cats. The first case was a client-owned intact female domestic shorthair cat that presented with fever, pale mucous membranes, and normocytic normochromic non-regenerative anemia. Prior to referral, an immunosuppressive prednisolone dose was administered at the local veterinary clinic for 1 month. The cat was diagnosed with high-grade alimentary lymphoma. Organisms were found on the surface of the red blood cells on blood smear examination. The second case was of a rescued cat that presented with dehydration and fever. The cat had normocytic normochromic non-regenerative anemia. Necropsy revealed concurrent feline infectious peritonitis. Polymerase chain reaction assay targeting 16S rRNA revealed CMhm infection in case 1 and dual infection of CMhm and CMt in case 2. Normocytic normochromic non-regenerative anemia was observed in both cats before and during the management of the systemic inflammation. This is the first clinical case report in Korea to demonstrate CMhm and CMt infections in symptomatic cats.
10.Laboratory information management system for COVID-19 non-clinical efficacy trial data
Suhyeon YOON ; Hyuna NOH ; Heejin JIN ; Sungyoung LEE ; Soyul HAN ; Sung-Hee KIM ; Jiseon KIM ; Jung Seon SEO ; Jeong Jin KIM ; In Ho PARK ; Jooyeon OH ; Joon-Yong BAE ; Gee Eun LEE ; Sun-Je WOO ; Sun-Min SEO ; Na-Won KIM ; Youn Woo LEE ; Hui Jeong JANG ; Seung-Min HONG ; Se-Hee AN ; Kwang-Soo LYOO ; Minjoo YEOM ; Hanbyeul LEE ; Bud JUNG ; Sun-Woo YOON ; Jung-Ah KANG ; Sang-Hyuk SEOK ; Yu Jin LEE ; Seo Yeon KIM ; Young Been KIM ; Ji-Yeon HWANG ; Dain ON ; Soo-Yeon LIM ; Sol Pin KIM ; Ji Yun JANG ; Ho LEE ; Kyoungmi KIM ; Hyo-Jung LEE ; Hong Bin KIM ; Jun Won PARK ; Dae Gwin JEONG ; Daesub SONG ; Kang-Seuk CHOI ; Ho-Young LEE ; Yang-Kyu CHOI ; Jung-ah CHOI ; Manki SONG ; Man-Seong PARK ; Jun-Young SEO ; Ki Taek NAM ; Jeon-Soo SHIN ; Sungho WON ; Jun-Won YUN ; Je Kyung SEONG
Laboratory Animal Research 2022;38(2):119-127
Background:
As the number of large-scale studies involving multiple organizations producing data has steadily increased, an integrated system for a common interoperable format is needed. In response to the coronavirus disease 2019 (COVID-19) pandemic, a number of global efforts are underway to develop vaccines and therapeutics. We are therefore observing an explosion in the proliferation of COVID-19 data, and interoperability is highly requested in multiple institutions participating simultaneously in COVID-19 pandemic research.
Results:
In this study, a laboratory information management system (LIMS) approach has been adopted to systemically manage various COVID-19 non-clinical trial data, including mortality, clinical signs, body weight, body temperature, organ weights, viral titer (viral replication and viral RNA), and multiorgan histopathology, from multiple institutions based on a web interface. The main aim of the implemented system is to integrate, standardize, and organize data collected from laboratories in multiple institutes for COVID-19 non-clinical efficacy testings. Six animal biosafety level 3 institutions proved the feasibility of our system. Substantial benefits were shown by maximizing collaborative high-quality non-clinical research.
Conclusions
This LIMS platform can be used for future outbreaks, leading to accelerated medical product development through the systematic management of extensive data from non-clinical animal studies.

Result Analysis
Print
Save
E-mail