1.Efficacy and safety of recombinant human anti-SARS-CoV-2 monoclonal antibody injection(F61 injection)in the treatment of patients with COVID-19 combined with renal damage:a randomized controlled exploratory clinical study
Ding-Hua CHEN ; Chao-Fan LI ; Yue NIU ; Li ZHANG ; Yong WANG ; Zhe FENG ; Han-Yu ZHU ; Jian-Hui ZHOU ; Zhe-Yi DONG ; Shu-Wei DUAN ; Hong WANG ; Meng-Jie HUANG ; Yuan-Da WANG ; Shuo-Yuan CONG ; Sai PAN ; Jing ZHOU ; Xue-Feng SUN ; Guang-Yan CAI ; Ping LI ; Xiang-Mei CHEN
Chinese Journal of Infection Control 2024;23(3):257-264
Objective To explore the efficacy and safety of recombinant human anti-severe acute respiratory syn-drome coronavirus 2(anti-SARS-CoV-2)monoclonal antibody injection(F61 injection)in the treatment of patients with coronavirus disease 2019(COVID-19)combined with renal damage.Methods Patients with COVID-19 and renal damage who visited the PLA General Hospital from January to February 2023 were selected.Subjects were randomly divided into two groups.Control group was treated with conventional anti-COVID-19 therapy,while trial group was treated with conventional anti-COVID-19 therapy combined with F61 injection.A 15-day follow-up was conducted after drug administration.Clinical symptoms,laboratory tests,electrocardiogram,and chest CT of pa-tients were performed to analyze the efficacy and safety of F61 injection.Results Twelve subjects(7 in trial group and 5 in control group)were included in study.Neither group had any clinical progression or death cases.The ave-rage time for negative conversion of nucleic acid of SARS-CoV-2 in control group and trial group were 3.2 days and 1.57 days(P=0.046),respectively.The scores of COVID-19 related target symptom in the trial group on the 3rd and 5th day after medication were both lower than those of the control group(both P<0.05).According to the clinical staging and World Health Organization 10-point graded disease progression scale,both groups of subjects improved but didn't show statistical differences(P>0.05).For safety,trial group didn't present any infusion-re-lated adverse event.Subjects in both groups demonstrated varying degrees of elevated blood glucose,elevated urine glucose,elevated urobilinogen,positive urine casts,and cardiac arrhythmia,but the differences were not statistica-lly significant(all P>0.05).Conclusion F61 injection has initially demonstrated safety and clinical benefit in trea-ting patients with COVID-19 combined with renal damage.As the domestically produced drug,it has good clinical accessibility and may provide more options for clinical practice.
2.Hemoglobin-stabilizd platinum-based polypyrrole nanoparticles and their photothermal antitumor studies
Jing LI ; Wei-wei ZENG ; Han-yue LI ; Lin MEI ; Da-quan CHEN
Acta Pharmaceutica Sinica 2024;59(6):1812-1818
Photothermal therapy is a new type of tumor therapy that uses near-infrared laser to specifically activate the photothermal agent accumulated in the lesion site, so as to achieve thermal ablation of cancer cells. However, the long metabolic cycle and difficult clearance of photothermal agent materials
3.Platinum-based polypyrrole is used in oxygen-enhanced photodynamic therapy
Yue ZHANG ; Han-yue LI ; Wei-jian ZENG ; Lin MEI ; Da-quan CHEN
Acta Pharmaceutica Sinica 2024;59(7):2153-2160
Photodynamic therapy is an emerging cancer therapy with clinical prospects, which plays a specific role in the tumor site and causes less harm to the human body. However, the toxicity of small molecules of hydrophobic photosensitizer, the tumor hypoxia microenvironment, and the biodegradability of nano-carrier systems affect its antitumor efficacy and metabolic clearance
4.Ginkgo biloba extract activates Nrf2/ARE pathway to improve vascular endothelial dysfunction induced by chronic intermittent hypoxia in rats
Sheng-Yong SI ; Hong-Man LI ; Si-Si MIAO ; Xiao HAN ; Zhi-Jing LI ; Chao-Jun WEI ; Da-Nan LIU
Chinese Pharmacological Bulletin 2024;40(10):1837-1844
Aim To investigate the effects of Ginkgo biloba extract(GBE)on vascular endothelial dysfunc-tion induced by chronic intermittent hypoxia(CIH)in rats and its related mechanisms.Methods The CIH rat model was established,and 50 and 100 mg·kg-1 GBE was administered by intragastric administration.The systolic blood pressure(SBP)of the tail artery was detected in each group.HE staining was used to detect the morphology of aorta tissue.DAF-FM DA staining and nitric reductase assay were used to detect NO levels.ELISA was used to detect serum ET-1,TNF-α and IL-6 levels.DHE staining was used to de-tect reactive oxygen species(ROS)levels of aortic tis-sue.Kits were used to detect the serum levels of MDA,SOD and GSH-Px.Western blot was used to detect the levels of VCAM-1,ICAM-1,nucleus Nrf2,HO-1 and NQO1 of aortic tissue.Results GBE sig-nificantly decreased the levels of SBP,ET-1,ROS,MDA,VCAM-1,ICAM-1,TNF-α and IL-6,and sig-nificantly increased the levels of NO,SOD,GSH-Px,nuclear Nrf2,HO-1 and NQO1 in CIH rats.GBE sig-nificantly improved the histomorphology of aorta in CIH rats.Conclusions GBE can improve vascular endo-thelial dysfunction and reduce blood pressure in CIH model rats.The mechanism may be related to the acti-vation of Nrf2/ARE pathway and the inhibition of oxi-dative stress and inflammation by GBE.
5.Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome (version 2024)
Junyu WANG ; Hai JIN ; Danfeng ZHANG ; Rutong YU ; Mingkun YU ; Yijie MA ; Yue MA ; Ning WANG ; Chunhong WANG ; Chunhui WANG ; Qing WANG ; Xinyu WANG ; Xinjun WANG ; Hengli TIAN ; Xinhua TIAN ; Yijun BAO ; Hua FENG ; Wa DA ; Liquan LYU ; Haijun REN ; Jinfang LIU ; Guodong LIU ; Chunhui LIU ; Junwen GUAN ; Rongcai JIANG ; Yiming LI ; Lihong LI ; Zhenxing LI ; Jinglian LI ; Jun YANG ; Chaohua YANG ; Xiao BU ; Xuehai WU ; Li BIE ; Binghui QIU ; Yongming ZHANG ; Qingjiu ZHANG ; Bo ZHANG ; Xiangtong ZHANG ; Rongbin CHEN ; Chao LIN ; Hu JIN ; Weiming ZHENG ; Mingliang ZHAO ; Liang ZHAO ; Rong HU ; Jixin DUAN ; Jiemin YAO ; Hechun XIA ; Ye GU ; Tao QIAN ; Suokai QIAN ; Tao XU ; Guoyi GAO ; Xiaoping TANG ; Qibing HUANG ; Rong FU ; Jun KANG ; Guobiao LIANG ; Kaiwei HAN ; Zhenmin HAN ; Shuo HAN ; Jun PU ; Lijun HENG ; Junji WEI ; Lijun HOU
Chinese Journal of Trauma 2024;40(5):385-396
Traumatic supraorbital fissure syndrome (TSOFS) is a symptom complex caused by nerve entrapment in the supraorbital fissure after skull base trauma. If the compressed cranial nerve in the supraorbital fissure is not decompressed surgically, ptosis, diplopia and eye movement disorder may exist for a long time and seriously affect the patients′ quality of life. Since its overall incidence is not high, it is not familiarized with the majority of neurosurgeons and some TSOFS may be complicated with skull base vascular injury. If the supraorbital fissure surgery is performed without treatment of vascular injury, it may cause massive hemorrhage, and disability and even life-threatening in severe cases. At present, there is no consensus or guideline on the diagnosis and treatment of TSOFS that can be referred to both domestically and internationally. To improve the understanding of TSOFS among clinical physicians and establish standardized diagnosis and treatment plans, the Skull Base Trauma Group of the Neurorepair Professional Committee of the Chinese Medical Doctor Association, Neurotrauma Group of the Neurosurgery Branch of the Chinese Medical Association, Neurotrauma Group of the Traumatology Branch of the Chinese Medical Association, and Editorial Committee of Chinese Journal of Trauma organized relevant experts to formulate Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome ( version 2024) based on evidence of evidence-based medicine and clinical experience of diagnosis and treatment. This consensus puts forward 12 recommendations on the diagnosis, classification, treatment, efficacy evaluation and follow-up of TSOFS, aiming to provide references for neurosurgeons from hospitals of all levels to standardize the diagnosis and treatment of TSOFS.
6.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
7.Establishment and application of the ten-fold rehydration formula for emergency resuscitation of pediatric patients after extensive burns.
Zhuan An SHEN ; Xin Zhu LIU ; Xiao Ye XIE ; Bo Han ZHANG ; Da Wei LI ; Zhao Xing LIU ; Hua Geng YUAN
Chinese Journal of Burns 2023;39(1):59-64
Objective: To investigate the scientificity and feasibility of the ten-fold rehydration formula for emergency resuscitation of pediatric patients after extensive burns. Methods: A retrospective observational study was conducted. The total burn area of 30%-100% total body surface area (TBSA) and body weight of 6-50 kg in 433 pediatric patients (250 males and 183 females, aged 3 months to 14 years) with extensive burns who met the inclusion criteria and admitted to the burn departments of 72 Class A tertiary hospitals were collected. The 6 319 pairs of simulated data were constructed after pairing each body weight of 6-50 kg (programmed in steps of 0.5 kg) and each total burn area of 30%-100% TBSA (programmed in steps of 1%TBSA). They were put into three accepted pediatric rehydration formulae, namely the commonly used domestic pediatric rehydration formula for burn patients (hereinafter referred to as the domestic rehydration formula), the Galveston formula, and the Cincinnati formula, and the two rehydration formulae for pediatric emergency, namely the simplified resuscitation formula for emergency care of patients with extensive burns proposed by the World Health Organization's Technical Working Group on Burns (TWGB, hereinafter referred to as the TWGB formula) and the pediatric ten-fold rehydration formula proposed by the author of this article--rehydration rate (mL/h)=body weight (kg) × 10 (mL·kg-1·h-1) to calculate the rehydration rate within 8 h post injury (hereinafter referred to as the rehydration rate). The range of the results of the 3 accepted pediatric rehydration formulae ±20% were regarded as the reasonable rehydration rate, and the accuracy rates of rehydration rate calculated using the two pediatric emergency rehydration formulae were compared. Using the maximum burn areas (55% and 85% TBSA) corresponding to the reasonable rehydration rate calculated by the pediatric ten-fold rehydration formula at the body weight of 6 and 50 kg respectively, the total burn area of 30% to 100% TBSA was divided into 3 segments and the accuracy rates of the rehydration rate calculated using the 2 pediatric emergency rehydration formulae in each segment were compared. When neither of the rehydration rates calculated by the 2 pediatric emergency rehydration formulae was reasonable, the differences between the two rehydration rates were compared. The distribution of 433 pediatric patients in the 3 previous total burn area segments was counted and the accuracy rates of the rehydration rate calculated using the 2 pediatric emergency rehydration formulae were calculated and compared. Data were statistically analyzed with McNemar test. Results: Substitution of 6 319 pairs of simulated data showed that the accuracy rates of the rehydration rates calculated by the pediatric ten-fold rehydration formula was 73.92% (4 671/6 319), which was significantly higher than 4.02% (254/6 319) of the TWGB formula (χ2=6 490.88,P<0.05). When the total burn area was 30%-55% and 56%-85% TBSA, the accuracy rates of the rehydration rates calculated by the pediatric ten-fold rehydration formula were 100% (2 314/2 314) and 88.28% (2 357/2 670), respectively, which were significantly higher than 10.98% (254/2 314) and 0 (0/2 670) of the TWGB formula (with χ2 values of 3 712.49 and 4 227.97, respectively, P<0.05); when the total burn area was 86%-100% TBSA, the accuracy rates of the rehydration rates calculated by the pediatric ten-fold rehydration formula and the TWGB formula were 0 (0/1 335). When the rehydration rates calculated by the 2 pediatric emergency rehydration formulae were unreasonable, the rehydration rates calculated by the pediatric ten-fold rehydration formula were all higher than those of the TWGB formula. There were 93.07% (403/433), 5.77% (25/433), and 1.15% (5/433) patients in the 433 pediatric patients had total burn area of 30%-55%, 56%-85%, and 86%-100% TBSA, respectively, and the accuracy rate of the rehydration rate calculated using the pediatric ten-fold rehydration formula was 97.69% (423/433), which was significantly higher than 0 (0/433) of the TWGB formula (χ2=826.90, P<0.05). Conclusions: The application of the pediatric ten-fold rehydration formula to estimate the rehydration rate of pediatric patients after extensive burns is more accurate and convenient, superior to the TWGB formula, suitable for application by front-line healthcare workers that are not specialized in burns in pre-admission rescue of pediatric patients with extensive burns, and is worthy of promotion.
Male
;
Female
;
Humans
;
Child
;
Burns/therapy*
;
Hospitalization
;
Resuscitation
;
Fluid Therapy/methods*
;
Body Surface Area
;
Retrospective Studies
8.Professor HAN Wei's clinical experience of acupuncture and moxibustion with Tongyang Xingshen for adolescent depressive disorder.
Wei MAO ; Ying WANG ; Li-da ZHANG ; Guo-Qing ZHANG ; Hai-Yang WU ; Cheng-Long LI ; Jun-Li WANG ; Wei HAN ; Yuan-Yuan HUANG
Chinese Acupuncture & Moxibustion 2023;43(4):405-408
Professor HAN Wei 's clinical experience of acupuncture and moxibustion with Tongyang Xingshen (promoting yang and regaining consciousness) for adolescent depressive disorder is introduced. It is believed that the internal causes of adolescent depressive disorder are mostly emotional and physical factors, while the external causes are mainly social factors, and yang-qi stagnation and emotional disorder are the key pathogenesis. The key of acupuncture and moxibustion with Tongyang Xingshen is warming and regulating the governor vessel. The governor vessel acupoints at head, neck and back are selected. At head, Baihui (GV 20) and Yintang (GV 24+) are selected; at neck, Fengfu (GV 16) and Dazhui (GV 14) are selected; at back, Taodao (GV 13), Shenzhu (GV 12), Shendao (GV 11), Zhiyang (GV 9) and Jinsuo (GV 8) are selected. The combination of disease differentiation and syndrome differentiation should be highly valued, and the moxibustion with Tongyang and acupuncture with Xingshen should be used simultaneously, and the strong stimulation is suggested.
Adolescent
;
Humans
;
Moxibustion
;
Acupuncture Therapy
;
Acupuncture Points
;
Physical Examination
;
Depressive Disorder
9.Effect of Tongdu Tiaoshen electroacupuncture pretreatment on PPARγ-mediated pyroptosis of cerebral cortex in rats with cerebral ischemia reperfusion injury.
Ting-Ting TONG ; Ying WANG ; Kui-Wu LI ; Li-da ZHANG ; Xiao-Qing WU ; Jun-Li WANG ; Cheng-Long LI ; Guo-Qing ZHANG ; Jun-Yu ZHANG ; Wei HAN
Chinese Acupuncture & Moxibustion 2023;43(7):783-792
OBJECTIVE:
To observe the effect of Tongdu Tiaoshen (promoting the circulation of the governor vessel and regulating the spirit) electroacupuncture (EA) pretreatment on pyroptosis mediated by peroxisome proliferators-activated receptor γ (PPARγ) of the cerebral cortex in rats with cerebral ischemia reperfusion injury (CIRI) and explore the potential mechanism of EA for the prevention and treatment of CIRI.
METHODS:
A total of 110 clean-grade male SD rats were randomly divided into a sham-operation group, a model group, an EA group, an EA + inhibitor group and an agonist group, 22 rats in each group. In the EA group, before modeling, EA was applied to "Baihui" (GV 20), "Fengfu" (GV 16) and "Dazhui" (GV 14), with disperse-dense wave, 2 Hz/5 Hz in frequency, 1 to 2 mA in intensity, lasting 20 min; once a day, consecutively for 7 days. On the base of the intervention as the EA group, on the day 7, the intraperitoneal injection with the PPARγ inhibitor, GW9662 (10 mg/kg) was delivered in the EA + inhibitor group. In the agonist group, on the day 7, the PPARγ agonist, pioglitazone hydrochloride (10 mg/kg) was injected intraperitoneally. At the end of intervention, except the sham-operation group, the modified thread embolization method was adopted to establish the right CIRI model in the rats of the other groups. Using the score of the modified neurological severity score (mNSS), the neurological defect condition of rats was evaluated. TTC staining was adopted to detect the relative cerebral infarction volume of rat, TUNEL staining was used to detect apoptosis of cerebral cortical nerve cells and the transmission electron microscope was used to observe pyroptosis of cerebral cortical neural cells. The positive expression of PPARγ and nucleotide-binding to oligomerization domain-like receptor protein 3 (NLRP3) in the cerebral cortex was detected with the immunofluorescence staining. The protein expression of PPARγ, NLRP3, cysteinyl aspartate specific protease-1 (caspase-1), gasdermin D (GSDMD) and GSDMD-N terminal (GSDMD-N) in the cerebral cortex was detected with Western blot. Using the quantitative real-time fluorescence-PCR, the mRNA expression of PPARγ, NLRP3, caspase-1 and GSDMD of the cerebral cortex was detected. The contents of interleukin (IL)-1β and IL-18 in the cerebral cortex of rats were determined by ELISA.
RESULTS:
Compared with the sham-operation group, the mNSS, the relative cerebral infarction volume and the TUNEL positive cells rate were increased (P<0.01), pyroptosis was severe, the protein and mRNA expression levels of PPARγ, NLRP3, caspase-1 and GSDMD were elevated (P<0.01); and the protein expression of GSDMD-N and contents of IL-1β and IL-18 were increased (P<0.01) in the model group. When compared with the model group, the mNSS, the relative cerebral infarction volume and the TUNEL positive cells rate were decreased (P<0.01), pyroptosis was alleviated, the protein and mRNA expression levels of PPARγ were increased (P<0.01), the protein and mRNA expression levels of NLRP3, caspase-1 and GSDMD were decreased (P<0.01), the protein expression of GSDMD-N was reduced (P<0.01); and the contents of IL-1β and IL-18 were lower (P<0.01) in the EA group and the agonist group; while, in the EA + inhibitor group, the protein expression of PPARγ was increased (P<0.01), the protein and mRNA expression levels of NLRP3 and GSDMD were decreased (P<0.01, P<0.05), the mRNA expression of caspase-1 was reduced (P<0.01); and the contents of IL-1β and IL-18 were lower (P<0.01). When compared with the EA + inhibitor group, the mNSS, the relative cerebral infarction volume and the TUNEL positive cells rate were decreased (P<0.05, P<0.01), pyroptosis was alleviated, the protein and mRNA expression levels of PPARγ were increased (P<0.01), the protein and mRNA expression levels of NLRP3, caspase-1 and GSDMD were decreased (P<0.01), the protein expression of GSDMD-N was reduced (P<0.01); and the contents of IL-1β and IL-18 were declined (P<0.01) in the EA group. Compared with the agonist group, in the EA group, the relative cerebral infarction volume and the TUNEL positive cells rate were increased (P<0.05, P<0.01), the mRNA expression of PPARγ was decreased (P<0.01) and the protein expression of GSDMD-N was elevated (P<0.05); and the contents of IL-1β and IL-18 were higher (P<0.01).
CONCLUSION
Tongdu Tiaoshen EA pretreatment can attenuate the neurological impairment in the rats with CIRI, and the underlying mechanism is related to the up-regulation of PPARγ inducing the inhibition of NLRP3 in the cerebral cortex of rats so that pyroptosis is affected.
Male
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
PPAR gamma/genetics*
;
Pyroptosis
;
Interleukin-18
;
Electroacupuncture
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Cerebral Cortex
;
Cerebral Infarction/therapy*
;
Caspases
;
RNA, Messenger
10.To compare the efficacy and incidence of severe hematological adverse events of flumatinib and imatinib in patients newly diagnosed with chronic phase chronic myeloid leukemia.
Xiao Shuai ZHANG ; Bing Cheng LIU ; Xin DU ; Yan Li ZHANG ; Na XU ; Xiao Li LIU ; Wei Ming LI ; Hai LIN ; Rong LIANG ; Chun Yan CHEN ; Jian HUANG ; Yun Fan YANG ; Huan Ling ZHU ; Ling PAN ; Xiao Dong WANG ; Gui Hui LI ; Zhuo Gang LIU ; Yan Qing ZHANG ; Zhen Fang LIU ; Jian Da HU ; Chun Shui LIU ; Fei LI ; Wei YANG ; Li MENG ; Yan Qiu HAN ; Li E LIN ; Zhen Yu ZHAO ; Chuan Qing TU ; Cai Feng ZHENG ; Yan Liang BAI ; Ze Ping ZHOU ; Su Ning CHEN ; Hui Ying QIU ; Li Jie YANG ; Xiu Li SUN ; Hui SUN ; Li ZHOU ; Ze Lin LIU ; Dan Yu WANG ; Jian Xin GUO ; Li Ping PANG ; Qing Shu ZENG ; Xiao Hui SUO ; Wei Hua ZHANG ; Yuan Jun ZHENG ; Qian JIANG
Chinese Journal of Hematology 2023;44(9):728-736
Objective: To analyze and compare therapy responses, outcomes, and incidence of severe hematologic adverse events of flumatinib and imatinib in patients newly diagnosed with chronic phase chronic myeloid leukemia (CML) . Methods: Data of patients with chronic phase CML diagnosed between January 2006 and November 2022 from 76 centers, aged ≥18 years, and received initial flumatinib or imatinib therapy within 6 months after diagnosis in China were retrospectively interrogated. Propensity score matching (PSM) analysis was performed to reduce the bias of the initial TKI selection, and the therapy responses and outcomes of patients receiving initial flumatinib or imatinib therapy were compared. Results: A total of 4 833 adult patients with CML receiving initial imatinib (n=4 380) or flumatinib (n=453) therapy were included in the study. In the imatinib cohort, the median follow-up time was 54 [interquartile range (IQR), 31-85] months, and the 7-year cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) were 95.2%, 88.4%, 78.3%, and 63.0%, respectively. The 7-year FFS, PFS, and OS rates were 71.8%, 93.0%, and 96.9%, respectively. With the median follow-up of 18 (IQR, 13-25) months in the flumatinib cohort, the 2-year cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) were 95.4%, 86.5%, 58.4%, and 46.6%, respectively. The 2-year FFS, PFS, and OS rates were 80.1%, 95.0%, and 99.5%, respectively. The PSM analysis indicated that patients receiving initial flumatinib therapy had significantly higher cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) and higher probabilities of FFS than those receiving the initial imatinib therapy (all P<0.001), whereas the PFS (P=0.230) and OS (P=0.268) were comparable between the two cohorts. The incidence of severe hematologic adverse events (grade≥Ⅲ) was comparable in the two cohorts. Conclusion: Patients receiving initial flumatinib therapy had higher cumulative incidences of therapy responses and higher probability of FFS than those receiving initial imatinib therapy, whereas the incidence of severe hematologic adverse events was comparable between the two cohorts.
Adult
;
Humans
;
Adolescent
;
Imatinib Mesylate/adverse effects*
;
Incidence
;
Antineoplastic Agents/adverse effects*
;
Retrospective Studies
;
Pyrimidines/adverse effects*
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy*
;
Treatment Outcome
;
Benzamides/adverse effects*
;
Leukemia, Myeloid, Chronic-Phase/drug therapy*
;
Aminopyridines/therapeutic use*
;
Protein Kinase Inhibitors/therapeutic use*

Result Analysis
Print
Save
E-mail