1.The Uptake and Distribution Evidence of Nano-and Microplastics in vivo after a Single High Dose of Oral Exposure
Tao HONG ; Wei SUN ; Yuan DENG ; Da Jian LYU ; Hong Cui JIN ; Long Ying BAI ; Jun NA ; Rui ZHANG ; Yuan GAO ; Wei Guo PAN ; Sen Zuo YANG ; Jun Ling YAN
Biomedical and Environmental Sciences 2024;37(1):31-41
Objective Tissue uptake and distribution of nano-/microplastics was studied at a single high dose by gavage in vivo.Methods Fluorescent microspheres (100 nm, 3 μm, and 10 μm) were given once at a dose of 200 mg/(kg·body weight). The fluorescence intensity (FI) in observed organs was measured using the IVIS Spectrum at 0.5, 1, 2, and 4 h after administration. Histopathology was performed to corroborate these findings.Results In the 100 nm group, the FI of the stomach and small intestine were highest at 0.5 h, and the FI of the large intestine, excrement, lung, kidney, liver, and skeletal muscles were highest at 4 h compared with the control group (P < 0.05). In the 3 μm group, the FI only increased in the lung at 2 h (P < 0.05). In the 10 μm group, the FI increased in the large intestine and excrement at 2 h, and in the kidney at 4 h (P < 0.05). The presence of nano-/microplastics in tissues was further verified by histopathology. The peak time of nanoplastic absorption in blood was confirmed.Conclusion Nanoplastics translocated rapidly to observed organs/tissues through blood circulation;however, only small amounts of MPs could penetrate the organs.
2.Protective Effect of Dihydromyricetin Against Exercise-Induced Muscle Damage and Its Mechanism
Wu YING ; Wang DA-WEI ; Li JUN ; Xu XIAN-JIE ; Gao ZHI-DAN ; Li HONG-YAN ; Zhang YONG ; Liu PENG
Chinese Medical Sciences Journal 2024;39(1):46-53,中插5
Objective lo investigate the protective effect of dihydromyricetin(DHM)against exercise-induced muscle damage(EIMD)in mice and its potential mechanism. Methods Adult male C57BL/6J mice were randomly divided into control group(CG),exercise group(EG),and exercise+100 mg/kg weightd DHM(DHM)group.The intervention lasted for four weeks,during which the animals in the EG and DHM groups were subjected to exercise training for 1 h per day.The day after the training,a 90-min treadmill exercise(slope:0 and speed:18 m/min)was conducted in both EG and DHM groups.Samples of blood and gastrocnemius muscles were harvested from the three groups 24 h after the exercise,followed by the measurement of serum creatine kinase(CK)and lactate dehydrogenase(LDH)activities,total superoxide dismutase(T-SOD)activity,malondialdehyde(MDA),and skeletal muscle mitochondrial enzyme complex Ⅰ and Ⅱ activities.Histological changes in the skeletal muscle were observed by transmission electron microscopy,and the protein expressions of mitochondrial function-related pathways were detected by Western blotting. Results Skeletal muscle morphological changes and mitochondrial damage were alleviated in the DHM group compared to those in the EG.The activities of EIMD markers CK and LDH and the level of lipid peroxidation were notably repressed and the serum T-SOD activity was enhanced after DHM intervention.Western blotting demonstrated that the expressions of sirtuin type 3(SIRT3),estrogen-related receptor alpha,and peroxisome proliferator-activated receptor-gamma coactivator-1 alpha in the skeletal muscle of mice increased after the DHM intervention. Conclusion DHM can relieve EIMD in mice,possibly by promoting the recovery of the mitochondrial structure and function in the skeletal muscle of mice after high-intensity exercise via the activation of the SIRT3 signaling pathway.
3.Development of biological safety protection third-level laboratory based on folding-modular shelters
Si-Qing ZHAO ; Jian-Qiao XIA ; Zhong-Jie SUN ; Kang OUYANG ; Xiao-Jun JIN ; Kang-Li ZHOU ; Wei XIE ; Hai-Yang LI ; Da-Peng JIANG ; Yan-Yan GAO ; Bei SUN
Chinese Medical Equipment Journal 2024;45(3):41-46
Objective To develop a biological safety protection third-level(BSL-3)laboratory based on folding-modular shelters to solve the problems of the existing laboratories in space and function expansion,large-scale deployment and low-cost transportation.Methods The BSL-3 laboratory was composed of a folding combined shelter module,a ventilation and purification module,a power supply and distribution module,a monitoring and communication module,a control system module and an equipment module.The folding combined shelter module used a leveling base frame as the foundation and a lightweight panel as the enclosure mechanism,and was divided into an auxiliary area and a protection protected area;the ventilation and purification module was made up of an air supply unit and an air exhaust unit,the air supply unit was integrated with a fresh-air air conditioner and the exhaust unit was equipped with a main fan,a standby fan and a bag in/bag out filter;the control system module adopted a supervision mode of decentralized control and centralized management,which executed communication with the data server as the center and Profinet protocol and MODBUS-TCP.Results The BSL-3 laboratory proved to meet the requirements of relevant standards in internal microenvironment,airflow direction,airtightness,working condition and disinfection effect.Conclusion The BSL-3 laboratory is compatible with large-scale transport and deployment and facilitates reliable and safe experiments for epidemic prevention and control and cross-regional support.[Chinese Medical Equipment Journal,2024,45(3):41-46]
4.Treatment of uncontrolled motion faults of TiRobot surgery robot:Four case reports
Ran GAO ; Da-Wei GUO ; Zhen-Wei WANG ; Wei GUO ; Dong-Yan LIU
Chinese Medical Equipment Journal 2024;45(11):117-120
The composition and working principle of TiRobot surgery robot were introduced.Four cases of uncontrolled motion faults of the robot in image alignment of the main control trolley,precision of the navigation and positioning instruments,positional offset of the robotic arm and initialization of the optical tracking system were explored in terms of phenomenon,cause and treatment.References were provided for medical engineers to treat similar faults.[Chinese Medical Equipment Journal,2024,45(11):117-120]
5.Improvement and Application of Sampling Device for Adsorption and Concentration of Volatile Organic Compounds
Xin-Yi GUO ; Man-Man WU ; Chao MA ; Jia-Xin CHEN ; Da-Jun LIN ; Zhen ZHOU ; Ying-Nan GAO ; Wei GAO
Chinese Journal of Analytical Chemistry 2024;52(10):1487-1495,中插14-中插24
An adsorption and concentration sampling device for volatile organic compounds(VOCs)was designed in this work,which improved the long-term monitoring stability of the online monitoring system for VOC adsorption and concentration,and solved the issue of rapid attenuation of responses toward higher carbon compounds.The designed VOC desorption device achieved an average heating rate of 40 ℃/s,with a relative standard deviation(RSD)of 0.4%.Quantitative analysis of mixture of 116 kinds of different VOC standard gases was performed,and the test results showed that the qualification rate of standard curves increased significantly from 90%to 99%,the proportion of detection limits below 0.1 nmol/mol improved from 85%to 90%,and the proportion of residual levels in the system below 0.1 nmol/mol also increased from 85%to 90%.The stable monitoring period was extended from 20 d to over 30 d,making it more conducive to long-term unattended monitoring by the developed instrument.
6.Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome (version 2024)
Junyu WANG ; Hai JIN ; Danfeng ZHANG ; Rutong YU ; Mingkun YU ; Yijie MA ; Yue MA ; Ning WANG ; Chunhong WANG ; Chunhui WANG ; Qing WANG ; Xinyu WANG ; Xinjun WANG ; Hengli TIAN ; Xinhua TIAN ; Yijun BAO ; Hua FENG ; Wa DA ; Liquan LYU ; Haijun REN ; Jinfang LIU ; Guodong LIU ; Chunhui LIU ; Junwen GUAN ; Rongcai JIANG ; Yiming LI ; Lihong LI ; Zhenxing LI ; Jinglian LI ; Jun YANG ; Chaohua YANG ; Xiao BU ; Xuehai WU ; Li BIE ; Binghui QIU ; Yongming ZHANG ; Qingjiu ZHANG ; Bo ZHANG ; Xiangtong ZHANG ; Rongbin CHEN ; Chao LIN ; Hu JIN ; Weiming ZHENG ; Mingliang ZHAO ; Liang ZHAO ; Rong HU ; Jixin DUAN ; Jiemin YAO ; Hechun XIA ; Ye GU ; Tao QIAN ; Suokai QIAN ; Tao XU ; Guoyi GAO ; Xiaoping TANG ; Qibing HUANG ; Rong FU ; Jun KANG ; Guobiao LIANG ; Kaiwei HAN ; Zhenmin HAN ; Shuo HAN ; Jun PU ; Lijun HENG ; Junji WEI ; Lijun HOU
Chinese Journal of Trauma 2024;40(5):385-396
Traumatic supraorbital fissure syndrome (TSOFS) is a symptom complex caused by nerve entrapment in the supraorbital fissure after skull base trauma. If the compressed cranial nerve in the supraorbital fissure is not decompressed surgically, ptosis, diplopia and eye movement disorder may exist for a long time and seriously affect the patients′ quality of life. Since its overall incidence is not high, it is not familiarized with the majority of neurosurgeons and some TSOFS may be complicated with skull base vascular injury. If the supraorbital fissure surgery is performed without treatment of vascular injury, it may cause massive hemorrhage, and disability and even life-threatening in severe cases. At present, there is no consensus or guideline on the diagnosis and treatment of TSOFS that can be referred to both domestically and internationally. To improve the understanding of TSOFS among clinical physicians and establish standardized diagnosis and treatment plans, the Skull Base Trauma Group of the Neurorepair Professional Committee of the Chinese Medical Doctor Association, Neurotrauma Group of the Neurosurgery Branch of the Chinese Medical Association, Neurotrauma Group of the Traumatology Branch of the Chinese Medical Association, and Editorial Committee of Chinese Journal of Trauma organized relevant experts to formulate Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome ( version 2024) based on evidence of evidence-based medicine and clinical experience of diagnosis and treatment. This consensus puts forward 12 recommendations on the diagnosis, classification, treatment, efficacy evaluation and follow-up of TSOFS, aiming to provide references for neurosurgeons from hospitals of all levels to standardize the diagnosis and treatment of TSOFS.
7.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
8.Guihuang Formula for type Ⅲ prostatitis with damp-heat stasis syndrome in the essence chamber:A clinical trial
Qing-He GAO ; Sheng-Jing LIU ; Ming ZHAO ; Zi-Wei ZHAO ; Bo-Da GUO
National Journal of Andrology 2024;30(8):738-743
Objective:To investigate the efficacy and safety of Guihuang Formula(GHF)in the treatment of type Ⅲ prostatitis with the syndrome of damp-heat stasis in the essence chamber.Methods:This study included 120 cases of type Ⅲ prostatitis with damp-heat stasis syndrome in the essence chamber,which were randomly and equally divided into a GHF and a control group,the for-mer treated with GHF and the latter with Tamsulosin Hydrochloride Sustained-Release Capsules,both for 6 successive weeks.We fol-lowed up the patients for 4 weeks,recorded the NIH-CPSI,TCM symptom scores,and results of prostatic fluid routine,blood and u-rine routine,liver and kidney function and electrocardiogram examinations,and compared them between the two groups of patients be-fore and after treatment.Results:Compared with the baseline,the total NIH-CPSI scores were significantly decreased in both the GHF and control groups after 6 weeks of treatment,even more significantly in the former group(28.34±9.23 vs 6.78±3.53,P<0.05)than in the latter(27.81±8.28 vs 14.48±4.27,P<0.05),so were the scores on pain,voiding symptoms,quality of life(QOL)impact,TCM symptoms and WBC count(all P<0.05),while the number of lecithin bodies remarkably increased(P<0.05).There were statically significant differences in the above parameters at 4,6 and 10 weeks of medication(P<0.05),but not at 2 weeks(P>0.05).No obvious abnormalities or adverse reactions were observed in either of the two groups during the treatment.Conclusion:Guihuang Formula is safe and effective in the treatment of type Ⅲ prostatitis with the syndrome of damp-heat stasis in the essence chamber.
9.Effect of Calcified Lymph Nodes on Thoracoscopic Lobectomy in Chronic Obstructive Pulmonary Disease Patients with Lung Cancer.
Da-Wei WANG ; Fei YANG ; Ya-Zhe GUO ; Ya-Ying SU ; Xin LIU ; Yong-Shan GAO ; Zhen-Ming ZHANG
Acta Academiae Medicinae Sinicae 2023;45(1):33-37
Objective To observe the effect of calcified lymph nodes on video-assisted thoracoscopic surgery (VATS) lobectomy in the chronic obstructive pulmonary disease (COPD) patients with lung cancer. Methods A retrospective analysis was conducted on the COPD patients with lung cancer who underwent VATS lobectomy in the Department of Thoracic Surgery in the First Affiliated Hospital of Hebei North University from May 2014 to May 2018.The patients were assigned into a calcified lymph node group and a control group according to the presence or absence of calcified lymph nodes in CT,and the size,morphology,and calcification degree of the lymph nodes were recorded.The operation duration,intraoperative blood loss,chest tube retention time,hospitalization days,and overall complication rate were compared between the two groups. Results The 30 patients in the calcified lymph node group included 17 patients with one calcified lymph node and 13 patients with two or more calcified lymph nodes,and a total of 65 calcified lymph nodes were recorded.The calcified lymph nodes with the size ≤5 mm were the most common (53.8%),and complete calcification was the most common form (55.4%) in lymph node calcification.The mean operation duration had no significant difference between the calcified lymph node group and the control group (t=-1.357,P=0.180).The intraoperative blood loss (t=-2.646,P=0.010),chest tube retention time (t=-2.302,P=0.025),and hospitalization days (t=-2.274,P=0.027) in the calcified lymph node group were higher than those in the control group. Conclusion Calcified lymph nodes increase the difficulty and risk of VATS lobectomy in the COPD patients with lung cancer.The findings of this study are conducive to predicting the perioperative process of VATS lobectomy.
Humans
;
Blood Loss, Surgical
;
Retrospective Studies
;
Lung Neoplasms/surgery*
;
Pulmonary Disease, Chronic Obstructive
;
Calcinosis
;
Lymph Nodes
10.Moving Epidemic Method for Surveillance and Early Warning of Hand, Foot, and Mouth Disease in Beijing, China.
Shuai Bing DONG ; Yu WANG ; Da HUO ; Hao ZHAO ; Bai Wei LIU ; Ren Qing LI ; Zhi Yong GAO ; Xiao Li WANG ; Dai Tao ZHANG ; Quan Yi WANG ; Lei JIA ; Peng YANG
Biomedical and Environmental Sciences 2023;36(12):1162-1166

Result Analysis
Print
Save
E-mail