1.Association Between Diabetes and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis of Observational Studies
Ana Paula PAGANO ; Bruna Ramos da SILVA ; Flávio Teixeira VIEIRA ; Luiz Fernando Meira FILHO ; Sarah A. PURCELL ; John D. LEWIS ; Michelle L. MACKENZIE ; Paula J. ROBSON ; Jennifer E. VENA ; Flávia Moraes SILVA ; Carla M. PRADO
The World Journal of Men's Health 2025;43(2):304-320
Purpose:
Metabolic diseases such as diabetes mellitus may play a role in the development and progression of prostate cancer (PC); however, this association remains to be explored in the context of specific PC stages. The objective of this study was to systematically review the evidence for an association between diabetes and overall, early, or advanced PC risk.
Materials and Methods:
A systematic review with meta-analysis was performed (MEDLINE, EMBASE, and CINAHL) from inception until September 2023. Cohort and case-control studies that assessed PC risk in adult males (≥18 years) associated with type 2 diabetes mellitus or diabetes (if there was no distinction between diabetes type) were included. The Newcastle-Ottawa Scale (NOS) was used to assess study bias; those with NOS<7 were excluded. Evidence certainty was assessed with the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) method.
Results:
Thirty-four studies (n=26 cohorts and n=8 case-controls) were included. Of these, 32 assessed diabetes and all PC stages combined, 12 included early PC stages, and 15 included advanced PC stages. Our meta-analysis showed diabetes had a protective effect against early PC development (n=11, risk ratio [RR]=0.71; 95% confidence interval [CI]=0.61–0.83, I2=84%) but no association was found for combined (n=21, RR=0.95; 95% CI=0.79–1.13, I2=99%) or advanced PC stages (n=15, RR=0.96; 95% CI=0.77–1.18, I2=98%) at diagnosis. According to GRADE, the evidence certainty was very low.
Conclusions
Diabetes may be protective against early PC stages, yet evidence linking diabetes to risk across all stages, and advanced PC specifically, is less conclusive. High heterogeneity may partially explain discrepancy in findings and was mostly associated with study design, method used for PC diagnosis, and risk measures. Our results may aid risk stratification of males with diabetes and inform new approaches for PC screening in this group, especially considering the reduced sensitivity of prostate-specific antigen values for those with diabetes.
2.Implantation of Islets Co-Seeded with Tregs in a Novel Biomaterial Reverses Diabetes in the NOD Mouse Model
Diana M. ELIZONDO ; Lais L. de Oliveira REKOWSKY ; Ayane de Sa RESENDE ; Jonathan SEENARINE ; Ricardo Luis Louzada da SILVA ; Jamel ALI ; Dazhi YANG ; Tatiana de MOURA ; Michael W. LIPSCOMB
Tissue Engineering and Regenerative Medicine 2025;22(1):43-55
Background:
Type 1 diabetes (T1D) results in autoreactive T cells chronically destroying pancreatic islets. This often results in irreplaceable loss of insulin-producing beta cells. To reverse course, a combinatorial strategy of employing glucose-responsive insulin restoration coupled with inhibiting autoreactive immune responses is required.
Methods:
Non-obese diabetic mice received a single intraperitoneal implantation of a novel biomaterial co-seeded with insulin-producing islets and T regulatory cells (Tregs). Controls included biomaterial seeded solely with islets, or biomaterial only groups. Mice were interrogated for changes in inflammation and diabetes progression via blood glucose monitoring, multiplex serum cytokine profiling, flow cytometry and immunohistochemistry assessments.
Results:
Islet and Tregs co-seeded biomaterial recipients had increased longevity, insulin secretion, and normoglycemia through 180 days post-implantation compared to controls. Serum profile revealed reduced TNFα, IFNγ, IL-1β and increased IL-10, insulin, C-Peptide, PP and PPY in recipients receiving co-seeded biomaterial. Evaluation of the resected co-seeded biomaterial revealed reduced infiltrating autoreactive CD8 + and CD4 + T cells concomitant with sustained presence of Foxp3 + Tregs; further analysis revealed that the few infiltrated resident effector CD4+ or CD8+ T cells were anergic, as measured by low levels of IFNγ and Granzyme-B upon stimulation when compared to controls. Interestingly, studies also revealed increased Tregs in the pancreas. However, there was no restoration of the pancreas beta cell compartment, suggesting normoglycemia and production of insulin levels were largely supported by the implanted co-seeded biomaterial.
Conclusion
These studies show the efficacy of a combinatorial approach seeding Tregs with pancreatic islets in a novel self-assembling organoid for reversing T1D.
3.Association Between Diabetes and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis of Observational Studies
Ana Paula PAGANO ; Bruna Ramos da SILVA ; Flávio Teixeira VIEIRA ; Luiz Fernando Meira FILHO ; Sarah A. PURCELL ; John D. LEWIS ; Michelle L. MACKENZIE ; Paula J. ROBSON ; Jennifer E. VENA ; Flávia Moraes SILVA ; Carla M. PRADO
The World Journal of Men's Health 2025;43(2):304-320
Purpose:
Metabolic diseases such as diabetes mellitus may play a role in the development and progression of prostate cancer (PC); however, this association remains to be explored in the context of specific PC stages. The objective of this study was to systematically review the evidence for an association between diabetes and overall, early, or advanced PC risk.
Materials and Methods:
A systematic review with meta-analysis was performed (MEDLINE, EMBASE, and CINAHL) from inception until September 2023. Cohort and case-control studies that assessed PC risk in adult males (≥18 years) associated with type 2 diabetes mellitus or diabetes (if there was no distinction between diabetes type) were included. The Newcastle-Ottawa Scale (NOS) was used to assess study bias; those with NOS<7 were excluded. Evidence certainty was assessed with the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) method.
Results:
Thirty-four studies (n=26 cohorts and n=8 case-controls) were included. Of these, 32 assessed diabetes and all PC stages combined, 12 included early PC stages, and 15 included advanced PC stages. Our meta-analysis showed diabetes had a protective effect against early PC development (n=11, risk ratio [RR]=0.71; 95% confidence interval [CI]=0.61–0.83, I2=84%) but no association was found for combined (n=21, RR=0.95; 95% CI=0.79–1.13, I2=99%) or advanced PC stages (n=15, RR=0.96; 95% CI=0.77–1.18, I2=98%) at diagnosis. According to GRADE, the evidence certainty was very low.
Conclusions
Diabetes may be protective against early PC stages, yet evidence linking diabetes to risk across all stages, and advanced PC specifically, is less conclusive. High heterogeneity may partially explain discrepancy in findings and was mostly associated with study design, method used for PC diagnosis, and risk measures. Our results may aid risk stratification of males with diabetes and inform new approaches for PC screening in this group, especially considering the reduced sensitivity of prostate-specific antigen values for those with diabetes.
4.Implantation of Islets Co-Seeded with Tregs in a Novel Biomaterial Reverses Diabetes in the NOD Mouse Model
Diana M. ELIZONDO ; Lais L. de Oliveira REKOWSKY ; Ayane de Sa RESENDE ; Jonathan SEENARINE ; Ricardo Luis Louzada da SILVA ; Jamel ALI ; Dazhi YANG ; Tatiana de MOURA ; Michael W. LIPSCOMB
Tissue Engineering and Regenerative Medicine 2025;22(1):43-55
Background:
Type 1 diabetes (T1D) results in autoreactive T cells chronically destroying pancreatic islets. This often results in irreplaceable loss of insulin-producing beta cells. To reverse course, a combinatorial strategy of employing glucose-responsive insulin restoration coupled with inhibiting autoreactive immune responses is required.
Methods:
Non-obese diabetic mice received a single intraperitoneal implantation of a novel biomaterial co-seeded with insulin-producing islets and T regulatory cells (Tregs). Controls included biomaterial seeded solely with islets, or biomaterial only groups. Mice were interrogated for changes in inflammation and diabetes progression via blood glucose monitoring, multiplex serum cytokine profiling, flow cytometry and immunohistochemistry assessments.
Results:
Islet and Tregs co-seeded biomaterial recipients had increased longevity, insulin secretion, and normoglycemia through 180 days post-implantation compared to controls. Serum profile revealed reduced TNFα, IFNγ, IL-1β and increased IL-10, insulin, C-Peptide, PP and PPY in recipients receiving co-seeded biomaterial. Evaluation of the resected co-seeded biomaterial revealed reduced infiltrating autoreactive CD8 + and CD4 + T cells concomitant with sustained presence of Foxp3 + Tregs; further analysis revealed that the few infiltrated resident effector CD4+ or CD8+ T cells were anergic, as measured by low levels of IFNγ and Granzyme-B upon stimulation when compared to controls. Interestingly, studies also revealed increased Tregs in the pancreas. However, there was no restoration of the pancreas beta cell compartment, suggesting normoglycemia and production of insulin levels were largely supported by the implanted co-seeded biomaterial.
Conclusion
These studies show the efficacy of a combinatorial approach seeding Tregs with pancreatic islets in a novel self-assembling organoid for reversing T1D.
5.Association Between Diabetes and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis of Observational Studies
Ana Paula PAGANO ; Bruna Ramos da SILVA ; Flávio Teixeira VIEIRA ; Luiz Fernando Meira FILHO ; Sarah A. PURCELL ; John D. LEWIS ; Michelle L. MACKENZIE ; Paula J. ROBSON ; Jennifer E. VENA ; Flávia Moraes SILVA ; Carla M. PRADO
The World Journal of Men's Health 2025;43(2):304-320
Purpose:
Metabolic diseases such as diabetes mellitus may play a role in the development and progression of prostate cancer (PC); however, this association remains to be explored in the context of specific PC stages. The objective of this study was to systematically review the evidence for an association between diabetes and overall, early, or advanced PC risk.
Materials and Methods:
A systematic review with meta-analysis was performed (MEDLINE, EMBASE, and CINAHL) from inception until September 2023. Cohort and case-control studies that assessed PC risk in adult males (≥18 years) associated with type 2 diabetes mellitus or diabetes (if there was no distinction between diabetes type) were included. The Newcastle-Ottawa Scale (NOS) was used to assess study bias; those with NOS<7 were excluded. Evidence certainty was assessed with the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) method.
Results:
Thirty-four studies (n=26 cohorts and n=8 case-controls) were included. Of these, 32 assessed diabetes and all PC stages combined, 12 included early PC stages, and 15 included advanced PC stages. Our meta-analysis showed diabetes had a protective effect against early PC development (n=11, risk ratio [RR]=0.71; 95% confidence interval [CI]=0.61–0.83, I2=84%) but no association was found for combined (n=21, RR=0.95; 95% CI=0.79–1.13, I2=99%) or advanced PC stages (n=15, RR=0.96; 95% CI=0.77–1.18, I2=98%) at diagnosis. According to GRADE, the evidence certainty was very low.
Conclusions
Diabetes may be protective against early PC stages, yet evidence linking diabetes to risk across all stages, and advanced PC specifically, is less conclusive. High heterogeneity may partially explain discrepancy in findings and was mostly associated with study design, method used for PC diagnosis, and risk measures. Our results may aid risk stratification of males with diabetes and inform new approaches for PC screening in this group, especially considering the reduced sensitivity of prostate-specific antigen values for those with diabetes.
6.Implantation of Islets Co-Seeded with Tregs in a Novel Biomaterial Reverses Diabetes in the NOD Mouse Model
Diana M. ELIZONDO ; Lais L. de Oliveira REKOWSKY ; Ayane de Sa RESENDE ; Jonathan SEENARINE ; Ricardo Luis Louzada da SILVA ; Jamel ALI ; Dazhi YANG ; Tatiana de MOURA ; Michael W. LIPSCOMB
Tissue Engineering and Regenerative Medicine 2025;22(1):43-55
Background:
Type 1 diabetes (T1D) results in autoreactive T cells chronically destroying pancreatic islets. This often results in irreplaceable loss of insulin-producing beta cells. To reverse course, a combinatorial strategy of employing glucose-responsive insulin restoration coupled with inhibiting autoreactive immune responses is required.
Methods:
Non-obese diabetic mice received a single intraperitoneal implantation of a novel biomaterial co-seeded with insulin-producing islets and T regulatory cells (Tregs). Controls included biomaterial seeded solely with islets, or biomaterial only groups. Mice were interrogated for changes in inflammation and diabetes progression via blood glucose monitoring, multiplex serum cytokine profiling, flow cytometry and immunohistochemistry assessments.
Results:
Islet and Tregs co-seeded biomaterial recipients had increased longevity, insulin secretion, and normoglycemia through 180 days post-implantation compared to controls. Serum profile revealed reduced TNFα, IFNγ, IL-1β and increased IL-10, insulin, C-Peptide, PP and PPY in recipients receiving co-seeded biomaterial. Evaluation of the resected co-seeded biomaterial revealed reduced infiltrating autoreactive CD8 + and CD4 + T cells concomitant with sustained presence of Foxp3 + Tregs; further analysis revealed that the few infiltrated resident effector CD4+ or CD8+ T cells were anergic, as measured by low levels of IFNγ and Granzyme-B upon stimulation when compared to controls. Interestingly, studies also revealed increased Tregs in the pancreas. However, there was no restoration of the pancreas beta cell compartment, suggesting normoglycemia and production of insulin levels were largely supported by the implanted co-seeded biomaterial.
Conclusion
These studies show the efficacy of a combinatorial approach seeding Tregs with pancreatic islets in a novel self-assembling organoid for reversing T1D.
7.Association Between Diabetes and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis of Observational Studies
Ana Paula PAGANO ; Bruna Ramos da SILVA ; Flávio Teixeira VIEIRA ; Luiz Fernando Meira FILHO ; Sarah A. PURCELL ; John D. LEWIS ; Michelle L. MACKENZIE ; Paula J. ROBSON ; Jennifer E. VENA ; Flávia Moraes SILVA ; Carla M. PRADO
The World Journal of Men's Health 2025;43(2):304-320
Purpose:
Metabolic diseases such as diabetes mellitus may play a role in the development and progression of prostate cancer (PC); however, this association remains to be explored in the context of specific PC stages. The objective of this study was to systematically review the evidence for an association between diabetes and overall, early, or advanced PC risk.
Materials and Methods:
A systematic review with meta-analysis was performed (MEDLINE, EMBASE, and CINAHL) from inception until September 2023. Cohort and case-control studies that assessed PC risk in adult males (≥18 years) associated with type 2 diabetes mellitus or diabetes (if there was no distinction between diabetes type) were included. The Newcastle-Ottawa Scale (NOS) was used to assess study bias; those with NOS<7 were excluded. Evidence certainty was assessed with the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) method.
Results:
Thirty-four studies (n=26 cohorts and n=8 case-controls) were included. Of these, 32 assessed diabetes and all PC stages combined, 12 included early PC stages, and 15 included advanced PC stages. Our meta-analysis showed diabetes had a protective effect against early PC development (n=11, risk ratio [RR]=0.71; 95% confidence interval [CI]=0.61–0.83, I2=84%) but no association was found for combined (n=21, RR=0.95; 95% CI=0.79–1.13, I2=99%) or advanced PC stages (n=15, RR=0.96; 95% CI=0.77–1.18, I2=98%) at diagnosis. According to GRADE, the evidence certainty was very low.
Conclusions
Diabetes may be protective against early PC stages, yet evidence linking diabetes to risk across all stages, and advanced PC specifically, is less conclusive. High heterogeneity may partially explain discrepancy in findings and was mostly associated with study design, method used for PC diagnosis, and risk measures. Our results may aid risk stratification of males with diabetes and inform new approaches for PC screening in this group, especially considering the reduced sensitivity of prostate-specific antigen values for those with diabetes.
8.Implantation of Islets Co-Seeded with Tregs in a Novel Biomaterial Reverses Diabetes in the NOD Mouse Model
Diana M. ELIZONDO ; Lais L. de Oliveira REKOWSKY ; Ayane de Sa RESENDE ; Jonathan SEENARINE ; Ricardo Luis Louzada da SILVA ; Jamel ALI ; Dazhi YANG ; Tatiana de MOURA ; Michael W. LIPSCOMB
Tissue Engineering and Regenerative Medicine 2025;22(1):43-55
Background:
Type 1 diabetes (T1D) results in autoreactive T cells chronically destroying pancreatic islets. This often results in irreplaceable loss of insulin-producing beta cells. To reverse course, a combinatorial strategy of employing glucose-responsive insulin restoration coupled with inhibiting autoreactive immune responses is required.
Methods:
Non-obese diabetic mice received a single intraperitoneal implantation of a novel biomaterial co-seeded with insulin-producing islets and T regulatory cells (Tregs). Controls included biomaterial seeded solely with islets, or biomaterial only groups. Mice were interrogated for changes in inflammation and diabetes progression via blood glucose monitoring, multiplex serum cytokine profiling, flow cytometry and immunohistochemistry assessments.
Results:
Islet and Tregs co-seeded biomaterial recipients had increased longevity, insulin secretion, and normoglycemia through 180 days post-implantation compared to controls. Serum profile revealed reduced TNFα, IFNγ, IL-1β and increased IL-10, insulin, C-Peptide, PP and PPY in recipients receiving co-seeded biomaterial. Evaluation of the resected co-seeded biomaterial revealed reduced infiltrating autoreactive CD8 + and CD4 + T cells concomitant with sustained presence of Foxp3 + Tregs; further analysis revealed that the few infiltrated resident effector CD4+ or CD8+ T cells were anergic, as measured by low levels of IFNγ and Granzyme-B upon stimulation when compared to controls. Interestingly, studies also revealed increased Tregs in the pancreas. However, there was no restoration of the pancreas beta cell compartment, suggesting normoglycemia and production of insulin levels were largely supported by the implanted co-seeded biomaterial.
Conclusion
These studies show the efficacy of a combinatorial approach seeding Tregs with pancreatic islets in a novel self-assembling organoid for reversing T1D.
9.Association Between Diabetes and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis of Observational Studies
Ana Paula PAGANO ; Bruna Ramos da SILVA ; Flávio Teixeira VIEIRA ; Luiz Fernando Meira FILHO ; Sarah A. PURCELL ; John D. LEWIS ; Michelle L. MACKENZIE ; Paula J. ROBSON ; Jennifer E. VENA ; Flávia Moraes SILVA ; Carla M. PRADO
The World Journal of Men's Health 2025;43(2):304-320
Purpose:
Metabolic diseases such as diabetes mellitus may play a role in the development and progression of prostate cancer (PC); however, this association remains to be explored in the context of specific PC stages. The objective of this study was to systematically review the evidence for an association between diabetes and overall, early, or advanced PC risk.
Materials and Methods:
A systematic review with meta-analysis was performed (MEDLINE, EMBASE, and CINAHL) from inception until September 2023. Cohort and case-control studies that assessed PC risk in adult males (≥18 years) associated with type 2 diabetes mellitus or diabetes (if there was no distinction between diabetes type) were included. The Newcastle-Ottawa Scale (NOS) was used to assess study bias; those with NOS<7 were excluded. Evidence certainty was assessed with the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) method.
Results:
Thirty-four studies (n=26 cohorts and n=8 case-controls) were included. Of these, 32 assessed diabetes and all PC stages combined, 12 included early PC stages, and 15 included advanced PC stages. Our meta-analysis showed diabetes had a protective effect against early PC development (n=11, risk ratio [RR]=0.71; 95% confidence interval [CI]=0.61–0.83, I2=84%) but no association was found for combined (n=21, RR=0.95; 95% CI=0.79–1.13, I2=99%) or advanced PC stages (n=15, RR=0.96; 95% CI=0.77–1.18, I2=98%) at diagnosis. According to GRADE, the evidence certainty was very low.
Conclusions
Diabetes may be protective against early PC stages, yet evidence linking diabetes to risk across all stages, and advanced PC specifically, is less conclusive. High heterogeneity may partially explain discrepancy in findings and was mostly associated with study design, method used for PC diagnosis, and risk measures. Our results may aid risk stratification of males with diabetes and inform new approaches for PC screening in this group, especially considering the reduced sensitivity of prostate-specific antigen values for those with diabetes.
10.Implantation of Islets Co-Seeded with Tregs in a Novel Biomaterial Reverses Diabetes in the NOD Mouse Model
Diana M. ELIZONDO ; Lais L. de Oliveira REKOWSKY ; Ayane de Sa RESENDE ; Jonathan SEENARINE ; Ricardo Luis Louzada da SILVA ; Jamel ALI ; Dazhi YANG ; Tatiana de MOURA ; Michael W. LIPSCOMB
Tissue Engineering and Regenerative Medicine 2025;22(1):43-55
Background:
Type 1 diabetes (T1D) results in autoreactive T cells chronically destroying pancreatic islets. This often results in irreplaceable loss of insulin-producing beta cells. To reverse course, a combinatorial strategy of employing glucose-responsive insulin restoration coupled with inhibiting autoreactive immune responses is required.
Methods:
Non-obese diabetic mice received a single intraperitoneal implantation of a novel biomaterial co-seeded with insulin-producing islets and T regulatory cells (Tregs). Controls included biomaterial seeded solely with islets, or biomaterial only groups. Mice were interrogated for changes in inflammation and diabetes progression via blood glucose monitoring, multiplex serum cytokine profiling, flow cytometry and immunohistochemistry assessments.
Results:
Islet and Tregs co-seeded biomaterial recipients had increased longevity, insulin secretion, and normoglycemia through 180 days post-implantation compared to controls. Serum profile revealed reduced TNFα, IFNγ, IL-1β and increased IL-10, insulin, C-Peptide, PP and PPY in recipients receiving co-seeded biomaterial. Evaluation of the resected co-seeded biomaterial revealed reduced infiltrating autoreactive CD8 + and CD4 + T cells concomitant with sustained presence of Foxp3 + Tregs; further analysis revealed that the few infiltrated resident effector CD4+ or CD8+ T cells were anergic, as measured by low levels of IFNγ and Granzyme-B upon stimulation when compared to controls. Interestingly, studies also revealed increased Tregs in the pancreas. However, there was no restoration of the pancreas beta cell compartment, suggesting normoglycemia and production of insulin levels were largely supported by the implanted co-seeded biomaterial.
Conclusion
These studies show the efficacy of a combinatorial approach seeding Tregs with pancreatic islets in a novel self-assembling organoid for reversing T1D.

Result Analysis
Print
Save
E-mail