1.Evaluation of Image Quality and Scan Time Efficiency in Accelerated 3D T1-Weighted Pediatric Brain MRI Using Deep Learning-Based Reconstruction
Hyunsuk YOO ; Hee Eun MOON ; Soojin KIM ; Da Hee KIM ; Young Hun CHOI ; Jeong-Eun CHEON ; Joon Sung LEE ; Seunghyun LEE
Korean Journal of Radiology 2025;26(2):180-192
Objective:
This study evaluated the effect of an accelerated three-dimensional (3D) T1-weighted pediatric brain MRI protocol using a deep learning (DL)-based reconstruction algorithm on scan time and image quality.
Materials and Methods:
This retrospective study included 46 pediatric patients who underwent conventional and accelerated, pre- and post-contrast, 3D T1-weighted brain MRI using a 3T scanner (SIGNA Premier; GE HealthCare) at a single tertiary referral center between March 1, 2023, and April 30, 2023. Conventional scans were reconstructed using intensity Filter A (Conv), whereas accelerated scans were reconstructed using intensity Filter A (Fast_A) and a DL-based algorithm (Fast_DL).Image quality was assessed quantitatively based on the coefficient of variation, relative contrast, apparent signal-to-noise ratio (aSNR), and apparent contrast-to-noise ratio (aCNR) and qualitatively according to radiologists’ ratings of overall image quality, artifacts, noisiness, gray-white matter differentiation, and lesion conspicuity.
Results:
The acquisition times for the pre- and post-contrast scans were 191 and 135 seconds, respectively, for the conventional scan. With the accelerated protocol, these were reduced to 135 and 80 seconds, achieving time reductions of 29.3% and 40.7%, respectively. DL-based reconstruction significantly reduced the coefficient of variation, improved the aSNR, aCNR, and overall image quality, and reduced the number of artifacts compared with the conventional acquisition method (all P < 0.05). However, the lesion conspicuity remained similar between the two protocols.
Conclusion
Utilizing a DL-based reconstruction algorithm in accelerated 3D T1-weighted pediatric brain MRI can significantly shorten the acquisition time, enhance image quality, and reduce artifacts, making it a viable option for pediatric imaging.
2.Evaluation of Image Quality and Scan Time Efficiency in Accelerated 3D T1-Weighted Pediatric Brain MRI Using Deep Learning-Based Reconstruction
Hyunsuk YOO ; Hee Eun MOON ; Soojin KIM ; Da Hee KIM ; Young Hun CHOI ; Jeong-Eun CHEON ; Joon Sung LEE ; Seunghyun LEE
Korean Journal of Radiology 2025;26(2):180-192
Objective:
This study evaluated the effect of an accelerated three-dimensional (3D) T1-weighted pediatric brain MRI protocol using a deep learning (DL)-based reconstruction algorithm on scan time and image quality.
Materials and Methods:
This retrospective study included 46 pediatric patients who underwent conventional and accelerated, pre- and post-contrast, 3D T1-weighted brain MRI using a 3T scanner (SIGNA Premier; GE HealthCare) at a single tertiary referral center between March 1, 2023, and April 30, 2023. Conventional scans were reconstructed using intensity Filter A (Conv), whereas accelerated scans were reconstructed using intensity Filter A (Fast_A) and a DL-based algorithm (Fast_DL).Image quality was assessed quantitatively based on the coefficient of variation, relative contrast, apparent signal-to-noise ratio (aSNR), and apparent contrast-to-noise ratio (aCNR) and qualitatively according to radiologists’ ratings of overall image quality, artifacts, noisiness, gray-white matter differentiation, and lesion conspicuity.
Results:
The acquisition times for the pre- and post-contrast scans were 191 and 135 seconds, respectively, for the conventional scan. With the accelerated protocol, these were reduced to 135 and 80 seconds, achieving time reductions of 29.3% and 40.7%, respectively. DL-based reconstruction significantly reduced the coefficient of variation, improved the aSNR, aCNR, and overall image quality, and reduced the number of artifacts compared with the conventional acquisition method (all P < 0.05). However, the lesion conspicuity remained similar between the two protocols.
Conclusion
Utilizing a DL-based reconstruction algorithm in accelerated 3D T1-weighted pediatric brain MRI can significantly shorten the acquisition time, enhance image quality, and reduce artifacts, making it a viable option for pediatric imaging.
3.Evaluation of Image Quality and Scan Time Efficiency in Accelerated 3D T1-Weighted Pediatric Brain MRI Using Deep Learning-Based Reconstruction
Hyunsuk YOO ; Hee Eun MOON ; Soojin KIM ; Da Hee KIM ; Young Hun CHOI ; Jeong-Eun CHEON ; Joon Sung LEE ; Seunghyun LEE
Korean Journal of Radiology 2025;26(2):180-192
Objective:
This study evaluated the effect of an accelerated three-dimensional (3D) T1-weighted pediatric brain MRI protocol using a deep learning (DL)-based reconstruction algorithm on scan time and image quality.
Materials and Methods:
This retrospective study included 46 pediatric patients who underwent conventional and accelerated, pre- and post-contrast, 3D T1-weighted brain MRI using a 3T scanner (SIGNA Premier; GE HealthCare) at a single tertiary referral center between March 1, 2023, and April 30, 2023. Conventional scans were reconstructed using intensity Filter A (Conv), whereas accelerated scans were reconstructed using intensity Filter A (Fast_A) and a DL-based algorithm (Fast_DL).Image quality was assessed quantitatively based on the coefficient of variation, relative contrast, apparent signal-to-noise ratio (aSNR), and apparent contrast-to-noise ratio (aCNR) and qualitatively according to radiologists’ ratings of overall image quality, artifacts, noisiness, gray-white matter differentiation, and lesion conspicuity.
Results:
The acquisition times for the pre- and post-contrast scans were 191 and 135 seconds, respectively, for the conventional scan. With the accelerated protocol, these were reduced to 135 and 80 seconds, achieving time reductions of 29.3% and 40.7%, respectively. DL-based reconstruction significantly reduced the coefficient of variation, improved the aSNR, aCNR, and overall image quality, and reduced the number of artifacts compared with the conventional acquisition method (all P < 0.05). However, the lesion conspicuity remained similar between the two protocols.
Conclusion
Utilizing a DL-based reconstruction algorithm in accelerated 3D T1-weighted pediatric brain MRI can significantly shorten the acquisition time, enhance image quality, and reduce artifacts, making it a viable option for pediatric imaging.
4.Delayed Diagnosis of Brachial Plexus Injury Due to Vertebral Arteriovenous Fistula Caused by Blunt Trauma
Jin Gee PARK ; Jae Yeon KIM ; Young Sook PARK ; Hyun Jung CHANG ; Eun Sol CHO ; Da Hye KIM ; Jeong Hwan LEE ; Se Jin KIM
Journal of Electrodiagnosis and Neuromuscular Diseases 2025;27(1):18-22
Vertebral arteriovenous fistula (VAVF) is a rare lesion characterized by an abnormal connection between the extracranial vertebral artery and the surrounding venous plexus. It typically arises due to penetrating injury, although it can occasionally result from blunt trauma. Brachial plexus injury (BPI) is also infrequently associated with VAVF. We present a rare case of VAVF caused by blunt trauma, which resulted in BPI. The patient, who had previously sustained a C2 fracture and C2–3 myelopathy from a bicycle accident, presented with new-onset weakness in the right upper extremity. His previous clinical history led to an initial suspicion of either an exacerbation of a pre-existing lesion or a shoulder injury. However, electromyography indicated that the weakness was due to BPI. Further evaluations later revealed VAVF to be the primary cause of the BPI. VAVF must be recognized as a rare potential reason for BPI, as timely intervention is essential for improving patient recovery and prognosis.
5.Evaluation of Image Quality and Scan Time Efficiency in Accelerated 3D T1-Weighted Pediatric Brain MRI Using Deep Learning-Based Reconstruction
Hyunsuk YOO ; Hee Eun MOON ; Soojin KIM ; Da Hee KIM ; Young Hun CHOI ; Jeong-Eun CHEON ; Joon Sung LEE ; Seunghyun LEE
Korean Journal of Radiology 2025;26(2):180-192
Objective:
This study evaluated the effect of an accelerated three-dimensional (3D) T1-weighted pediatric brain MRI protocol using a deep learning (DL)-based reconstruction algorithm on scan time and image quality.
Materials and Methods:
This retrospective study included 46 pediatric patients who underwent conventional and accelerated, pre- and post-contrast, 3D T1-weighted brain MRI using a 3T scanner (SIGNA Premier; GE HealthCare) at a single tertiary referral center between March 1, 2023, and April 30, 2023. Conventional scans were reconstructed using intensity Filter A (Conv), whereas accelerated scans were reconstructed using intensity Filter A (Fast_A) and a DL-based algorithm (Fast_DL).Image quality was assessed quantitatively based on the coefficient of variation, relative contrast, apparent signal-to-noise ratio (aSNR), and apparent contrast-to-noise ratio (aCNR) and qualitatively according to radiologists’ ratings of overall image quality, artifacts, noisiness, gray-white matter differentiation, and lesion conspicuity.
Results:
The acquisition times for the pre- and post-contrast scans were 191 and 135 seconds, respectively, for the conventional scan. With the accelerated protocol, these were reduced to 135 and 80 seconds, achieving time reductions of 29.3% and 40.7%, respectively. DL-based reconstruction significantly reduced the coefficient of variation, improved the aSNR, aCNR, and overall image quality, and reduced the number of artifacts compared with the conventional acquisition method (all P < 0.05). However, the lesion conspicuity remained similar between the two protocols.
Conclusion
Utilizing a DL-based reconstruction algorithm in accelerated 3D T1-weighted pediatric brain MRI can significantly shorten the acquisition time, enhance image quality, and reduce artifacts, making it a viable option for pediatric imaging.
6.Evaluation of Image Quality and Scan Time Efficiency in Accelerated 3D T1-Weighted Pediatric Brain MRI Using Deep Learning-Based Reconstruction
Hyunsuk YOO ; Hee Eun MOON ; Soojin KIM ; Da Hee KIM ; Young Hun CHOI ; Jeong-Eun CHEON ; Joon Sung LEE ; Seunghyun LEE
Korean Journal of Radiology 2025;26(2):180-192
Objective:
This study evaluated the effect of an accelerated three-dimensional (3D) T1-weighted pediatric brain MRI protocol using a deep learning (DL)-based reconstruction algorithm on scan time and image quality.
Materials and Methods:
This retrospective study included 46 pediatric patients who underwent conventional and accelerated, pre- and post-contrast, 3D T1-weighted brain MRI using a 3T scanner (SIGNA Premier; GE HealthCare) at a single tertiary referral center between March 1, 2023, and April 30, 2023. Conventional scans were reconstructed using intensity Filter A (Conv), whereas accelerated scans were reconstructed using intensity Filter A (Fast_A) and a DL-based algorithm (Fast_DL).Image quality was assessed quantitatively based on the coefficient of variation, relative contrast, apparent signal-to-noise ratio (aSNR), and apparent contrast-to-noise ratio (aCNR) and qualitatively according to radiologists’ ratings of overall image quality, artifacts, noisiness, gray-white matter differentiation, and lesion conspicuity.
Results:
The acquisition times for the pre- and post-contrast scans were 191 and 135 seconds, respectively, for the conventional scan. With the accelerated protocol, these were reduced to 135 and 80 seconds, achieving time reductions of 29.3% and 40.7%, respectively. DL-based reconstruction significantly reduced the coefficient of variation, improved the aSNR, aCNR, and overall image quality, and reduced the number of artifacts compared with the conventional acquisition method (all P < 0.05). However, the lesion conspicuity remained similar between the two protocols.
Conclusion
Utilizing a DL-based reconstruction algorithm in accelerated 3D T1-weighted pediatric brain MRI can significantly shorten the acquisition time, enhance image quality, and reduce artifacts, making it a viable option for pediatric imaging.
7.Long-Term Follow-Up of Interstitial Lung Abnormalities in Low-Dose Chest CT in Health Screening: Exploring the Predictors of Clinically Significant Interstitial Lung Diseases Using Artificial Intelligence-Based Quantitative CT Analysis
Won Jong JEONG ; Bo Da NAM ; Jung Hwa HWANG ; Chang Hyun LEE ; Hee-Young YOON ; Eun Ji LEE ; Eunsun OH ; Jewon JEONG ; Sung Hwan BAE
Journal of the Korean Society of Radiology 2024;85(6):1141-1156
Purpose:
This study examined longitudinal changes in interstitial lung abnormalities (ILAs) and predictors of clinically significant interstitial lung diseases (ILDs) in a screening population with ILAs.
Materials and Methods:
We retrieved 36891 low-dose chest CT records from screenings between January 2003 and May 2021. After identifying 101 patients with ILAs, the clinical findings, spirometry results, and initial and follow-up CT findings, including visual and artificial intelligence-based quantitative analyses, were compared between patients diagnosed with ILD (n = 23, 23%) and those who were not (n = 78, 77%). Logistic regression analysis was used to identify significant parameters for the clinical diagnosis of ILD.
Results:
Twenty-three patients (n = 23, 23%) were subsequently diagnosed with clinically significant ILDs at follow-up (mean, 8.7 years). Subpleural fibrotic ILAs on initial CT and signs of progression on follow-up CT were common in the ILD group (both p < 0.05). Logistic regression analysis revealed that emerging respiratory symptoms (odds ratio [OR], 5.56; 95% confidence interval [CI], 1.28–24.21; p = 0.022) and progression of ILAs at follow-up chest CT (OR, 4.07; 95% CI, 1.00–16.54; p = 0.050) were significant parameters for clinical diagnosis of ILD.
Conclusion
Clinically significant ILD was subsequently diagnosed in approximately one-quarter of the screened population with ILAs. Emerging respiratory symptoms and progression of ILAs at followup chest CT can be predictors of clinically significant ILDs.
8.Long-Term Follow-Up of Interstitial Lung Abnormalities in Low-Dose Chest CT in Health Screening: Exploring the Predictors of Clinically Significant Interstitial Lung Diseases Using Artificial Intelligence-Based Quantitative CT Analysis
Won Jong JEONG ; Bo Da NAM ; Jung Hwa HWANG ; Chang Hyun LEE ; Hee-Young YOON ; Eun Ji LEE ; Eunsun OH ; Jewon JEONG ; Sung Hwan BAE
Journal of the Korean Society of Radiology 2024;85(6):1141-1156
Purpose:
This study examined longitudinal changes in interstitial lung abnormalities (ILAs) and predictors of clinically significant interstitial lung diseases (ILDs) in a screening population with ILAs.
Materials and Methods:
We retrieved 36891 low-dose chest CT records from screenings between January 2003 and May 2021. After identifying 101 patients with ILAs, the clinical findings, spirometry results, and initial and follow-up CT findings, including visual and artificial intelligence-based quantitative analyses, were compared between patients diagnosed with ILD (n = 23, 23%) and those who were not (n = 78, 77%). Logistic regression analysis was used to identify significant parameters for the clinical diagnosis of ILD.
Results:
Twenty-three patients (n = 23, 23%) were subsequently diagnosed with clinically significant ILDs at follow-up (mean, 8.7 years). Subpleural fibrotic ILAs on initial CT and signs of progression on follow-up CT were common in the ILD group (both p < 0.05). Logistic regression analysis revealed that emerging respiratory symptoms (odds ratio [OR], 5.56; 95% confidence interval [CI], 1.28–24.21; p = 0.022) and progression of ILAs at follow-up chest CT (OR, 4.07; 95% CI, 1.00–16.54; p = 0.050) were significant parameters for clinical diagnosis of ILD.
Conclusion
Clinically significant ILD was subsequently diagnosed in approximately one-quarter of the screened population with ILAs. Emerging respiratory symptoms and progression of ILAs at followup chest CT can be predictors of clinically significant ILDs.
9.Long-Term Follow-Up of Interstitial Lung Abnormalities in Low-Dose Chest CT in Health Screening: Exploring the Predictors of Clinically Significant Interstitial Lung Diseases Using Artificial Intelligence-Based Quantitative CT Analysis
Won Jong JEONG ; Bo Da NAM ; Jung Hwa HWANG ; Chang Hyun LEE ; Hee-Young YOON ; Eun Ji LEE ; Eunsun OH ; Jewon JEONG ; Sung Hwan BAE
Journal of the Korean Society of Radiology 2024;85(6):1141-1156
Purpose:
This study examined longitudinal changes in interstitial lung abnormalities (ILAs) and predictors of clinically significant interstitial lung diseases (ILDs) in a screening population with ILAs.
Materials and Methods:
We retrieved 36891 low-dose chest CT records from screenings between January 2003 and May 2021. After identifying 101 patients with ILAs, the clinical findings, spirometry results, and initial and follow-up CT findings, including visual and artificial intelligence-based quantitative analyses, were compared between patients diagnosed with ILD (n = 23, 23%) and those who were not (n = 78, 77%). Logistic regression analysis was used to identify significant parameters for the clinical diagnosis of ILD.
Results:
Twenty-three patients (n = 23, 23%) were subsequently diagnosed with clinically significant ILDs at follow-up (mean, 8.7 years). Subpleural fibrotic ILAs on initial CT and signs of progression on follow-up CT were common in the ILD group (both p < 0.05). Logistic regression analysis revealed that emerging respiratory symptoms (odds ratio [OR], 5.56; 95% confidence interval [CI], 1.28–24.21; p = 0.022) and progression of ILAs at follow-up chest CT (OR, 4.07; 95% CI, 1.00–16.54; p = 0.050) were significant parameters for clinical diagnosis of ILD.
Conclusion
Clinically significant ILD was subsequently diagnosed in approximately one-quarter of the screened population with ILAs. Emerging respiratory symptoms and progression of ILAs at followup chest CT can be predictors of clinically significant ILDs.
10.Two Cases of Kawasaki Disease Presenting with Meningitis
Sehyun KANG ; Jeong Eun LEE ; Da Eun ROH ; Bo Lyun LEE
Annals of Child Neurology 2024;32(2):140-142

Result Analysis
Print
Save
E-mail