1.Clinical Value of Translocator Protein Gene in Evaluating the Efficacy of FLT3-ITD/DNMT3A R882 Double-Mutated Acute Myeloid Leukemia.
Shan-Hao TANG ; Ying LU ; Pi-Sheng ZHANG ; Dong CHEN ; Xu-Hui LIU ; Xiao-Hong DU ; Jun-Jie CAO ; Shuang-Yue LI ; Ke-Ya SHA ; Lie-Guang CHEN ; Xian-Xu ZHUANG ; Pei-Pei YE ; Li LIN ; Ren-Zhi PEI
Journal of Experimental Hematology 2023;31(1):45-49
		                        		
		                        			OBJECTIVE:
		                        			To observe the clinical significance of translocator proteins (TSPO) gene in the treatment of FLT3-ITD/DNMT3A R882 double-mutated acute myeloid leukemia (AML).
		                        		
		                        			METHODS:
		                        			Seventy-six patients with AML hospitalized in the Department of Hematology of the Affiliated People's Hospital of Ningbo University from June 2018 to June 2020 were selected, including 34 patients with FLT3-ITD mutation, 27 patients with DNMT3A R882 mutation, 15 patients with FLT3-ITD/DNMT3A R882 double mutation, as well as 19 patients with immune thrombocytopenia (ITP) hospitalized during the same period as control group. RNA was routinely extracted from 3 ml bone marrow retained during bone puncture, and TSPO gene expression was detected by transcriptome sequencing (using 2-deltadeltaCt calculation).
		                        		
		                        			RESULTS:
		                        			The expression of TSPO gene in FLT3-ITD group and DNMT3A R882 group at first diagnosis was 2.02±1.04 and 1.85±0.76, respectively, which were both higher than 1.00±0.06 in control group, but the differences were not statistically significant (P=0.671, P=0.821). The expression of TSPO gene in the FLT3-ITD/DNMT3A R882 group was 3.98±1.07, wich was significantly higher than that in the FLT3-ITD group and DNMT3A R882 group, the differences were statistically significant (P=0.032, P=0.021). The expression of TSPO gene in patients who achieved complete response after chemotherapy in the FLT3-ITD/DNMT3A R882 group was 1.19±0.87, which was significantly lower than that at first diagnosis, and the difference was statistically significant (P=0.011).
		                        		
		                        			CONCLUSION
		                        			TSPO gene may be used as an indicator of efficacy in FLT3-ITD /DNMT3A R882 double-mutated AML.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			DNA (Cytosine-5-)-Methyltransferases/genetics*
		                        			;
		                        		
		                        			DNA Methyltransferase 3A
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Leukemia, Myeloid, Acute/drug therapy*
		                        			;
		                        		
		                        			Nucleophosmin
		                        			;
		                        		
		                        			Prognosis
		                        			;
		                        		
		                        			fms-Like Tyrosine Kinase 3/genetics*
		                        			;
		                        		
		                        			Receptors, GABA/therapeutic use*
		                        			
		                        		
		                        	
2.Effect of FLT3-ITD with DNMT3A R882 double-mutation on the prognosis of acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation.
Shan Hao TANG ; Ying LU ; Pi Sheng ZHANG ; Xu Hui LIU ; Xiao Hong DU ; Dong CHEN ; Ke Ya SHA ; Shuang Yue LI ; Jun Jie CAO ; Lie Guang CHEN ; Xian Xu ZHUANG ; Ren Zhi PEI ; Xiao Wen TANG
Chinese Journal of Hematology 2018;39(7):552-557
		                        		
		                        			
		                        			Objective: To investigate the impact of FLT3-ITD and DNMT3A R882 double mutations to the prognosis of acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Methods: FLT3-ITD, DNMT3A, C-kit, CEBPA, FLT3-TKD and NPM1 mutations were detected in 206 newly diagnosed AML patients by Sanger sequencing (M(3) and those received FLT3 inhibitor were excluded). Clinical data of AML patients were retrospectively analyzed to compare the prognosis of each gene mutation group. Results: ①Of 206 patients, 104 were male and 102 female with a median age of 38 (3-63) years, including 6 cases of M(0), 24 cases of M(1), 56 cases of M(2), 39 cases of M(4), 63 cases of M(5), 6 cases of M(6) and 12 unclassified cases. ②All 206 patients were divided into four groups according to the mutation gene at the time of diagnosis: FLT3-ITD(+) DNMT3A R882(+) group (group A), FLT3-ITD(+) DNMT3A R882(-) group (group B), FLT3-ITD(-) DNMT3A R882(+) group (group C) and FLT3-ITD(-) DNMT3A R882(-) groups (group D). Gender, leukocyte count at diagnosis, chromosome karyotype, the median age, FAB classification, disease status prior to transplantation, type of donor, conditioning regimen and GVHD were not significantly different between four groups (P>0.05). ③The 2-year cumulative recurrence rate (CIR) of group A was significantly higher than that of other groups [group A (72.2±2.6)%, group B (38.6±0.6)%, group C (36.8±1.6)%, group D (27.8±0.1)%, respectively, P<0.05], while the 2-year overall survival (OS) rate and 2-year leukocyte-free survival (LFS) rate were lower than those of other groups [group A (30.9±13.3)%, (11.3±10.2)%; group B (67.5±7.8)%, (47.9±8.4)%; group C (61.4±12.4)%, (56.8±12.5)%; group D (80.1±3.7)%, (79.7±3.6)%, respectively, P<0.05]. Conclusion: AML patients with FLT3-ITD and DNMT3A R882 double mutations had a very high CIR and low OS, LFS after transplantation.
		                        		
		                        		
		                        		
		                        			Adolescent
		                        			;
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Child
		                        			;
		                        		
		                        			Child, Preschool
		                        			;
		                        		
		                        			DNA (Cytosine-5-)-Methyltransferases/genetics*
		                        			;
		                        		
		                        			DNA Methyltransferase 3A
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Hematopoietic Stem Cell Transplantation
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Leukemia, Myeloid, Acute
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Middle Aged
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Nucleophosmin
		                        			;
		                        		
		                        			Prognosis
		                        			;
		                        		
		                        			Retrospective Studies
		                        			;
		                        		
		                        			Young Adult
		                        			;
		                        		
		                        			fms-Like Tyrosine Kinase 3/genetics*
		                        			
		                        		
		                        	
3.Inhibitory effect of polyphyllin Ⅰ on the proliferation of prostate cancer PC3 cells via ERK1/2/P65/DNMT1 and its molecular mechanism.
Pei-Liang ZOU ; Qiu-Hong ZHANG ; Jian-Fu ZHOU ; Rong-Wu LIN ; Zhi-Qiang CHEN ; Song-Tao XIANG
National Journal of Andrology 2018;24(3):199-205
ObjectiveTo explore the inhibitory effect of polyphyllin Ⅰ (PPⅠ) on the proliferation of castration-resistant prostate cancer PC3 cells and its molecular mechanism.
METHODSWe cultured human prostate cancer PC3 cells in vitro and treated them with PPⅠ at the concentrations of 0 (blank group), 0.4, 0.8, 1.2, 1.6, 2.0, and 2.4 μmol/L for 24, 48, and 72 hours, respectively. Then we detected the proliferation of the cells by MTT assay, measured their apoptosis by flow cytometry, and determined the expressions of p-ERK1/2, ERK1/2, NF-κB/p65 and DNMT1 proteins as well as the level of NF-κB/p65 in the cells additionally treated with the ERK1/2 inhibitor SP600125 by Western blot.
RESULTSCompared with the blank control group, the PPⅠ-treated PC3 cells showed a concentration- and time-dependent reduction of the survival rate (1.00 ± 0.00 vs 0.85 ± 0.05, P < 0.01) at 0.4 μmol/L after 48 hours of intervention, concentration-dependent early apoptosis at 0.8 μmol/L (4.83 ± 0.95 vs 13.83 ± 2.97, P < 0.01), time-dependent increase of the expressions of p-ERK1/2 (1.00 ± 0.00 vs 1.73 ± 0.17, P < 0.01) and ERK1/2 (1.00 ± 0.00 vs 1.36 ± 0.12, P < 0.01) at 2 hours, and concentration-dependent decrease of the expressions of NF-κB/p65 and DNMT1 at 1.2 μmol/L (1.00 ± 0.00 vs 0.78 ± 0.10 and 0.63 ± 0.06, P < 0.01) and 1.6 μmol/L (1.00 ± 0.00 vs 0.67 ± 0.11 and 0.52 ± 0.09, P<0.01). Inhibition of ERK1/2 phosphorylation with PD98059 markedly reversed PPⅠ-induced decrease of the NF-κB/p65 expression as compared with that in the PPⅠ group (0.86 ± 0.18 vs 0.43 ± 0.09, P < 0.05).
CONCLUSIONSPPⅠ induces the early apoptosis and suppresses the proliferation of PC3 cells, probably by activating the ERK1/2 pathway and inhibiting the expressions of the NF-κB/p65 and DNMT1 proteins.
Apoptosis ; Cell Proliferation ; drug effects ; DNA (Cytosine-5-)-Methyltransferase 1 ; metabolism ; Diosgenin ; analogs & derivatives ; pharmacology ; Flavonoids ; metabolism ; Humans ; MAP Kinase Signaling System ; Male ; Mitogen-Activated Protein Kinase 1 ; metabolism ; Mitogen-Activated Protein Kinase 3 ; metabolism ; NF-kappa B ; metabolism ; PC-3 Cells ; Phosphorylation ; Prostatic Neoplasms, Castration-Resistant ; drug therapy ; metabolism ; pathology ; Signal Transduction ; Transcription Factor RelA ; metabolism
4.Effect of phenelzine on the proliferation, apoptosis and histone methylation and acetylation of Molt-4 cells.
Yan QIU ; Yiqun HUANG ; Xudong MA
Chinese Journal of Hematology 2016;37(2):144-148
OBJECTIVETo investigate the effect of monoamine oxidase inhibitor phenelzine on proliferation, apoptosis and histone modulation in acute lymphoblastic leukemia cell line Molt-4 cells.
METHODSThe effect of Phenelzine on cell proliferation was detected by MTT. Apoptotic rate was measured by flow cytometry. The variation of apoptosis associated proteins Caspase-3, Bcl-2 and Bax, cyclin-dependent kinase inhibitor p21, tumor suppressor protein p15, and the expression level of histone methylation of H3K4, H3K9 and histone acetylation of H3, DNMT1 were detected by Western Blot.
RESULTS① Molt-4 cell proliferation rates were (87.68±3.54)%, (67.84±3.24)%, (51.48±3.37)%, (28.72±2.56)% respectively after exposured to phenelzine at 5, 10, 15, 20 μmol/L for 24 h, P<0.05. ② After 10 μmol/L of phenelzine exposure for 24, 48, 72 h, cell proliferation rates were (67.84±3.24)%, (50.24±2.01)%, (40.31±2.25)%, P<0.05. ③ The apoptotic rates were (13.64±2.58)%, (31.24±3.42)%, (56.37±4.26)% after phenelzine treatment at 5, 10, 20 μmol/L for 24 h, which was concentration dependent. ④ Phenelzine could upregulate the expression of Bax, caspase-3, p21, and downregulate Bcl-2 expression. Phenelzine upregulated the methylation level of histone H3K4me1, H3K4me2 and histone acetylated H3, while it didn't change the level of histone H3K4me3, H3K9me1, H3K9me2. ⑤ Phenelzine inhibited DNMT1 expression and promoted p15 expression.
CONCLUSIONSPhenelzine increased the methylation of histone H3K4me1, H3K4me2, acetylation of histone H3 and p21, and decreased the expression of DNMT1 and p15, and ultimately inhibited the proliferation and apoptosis of Molt-4 cells.
Acetylation ; Apoptosis ; drug effects ; Apoptosis Regulatory Proteins ; metabolism ; Cell Line, Tumor ; Cell Proliferation ; Cyclin-Dependent Kinase Inhibitor p15 ; metabolism ; Cyclin-Dependent Kinase Inhibitor p21 ; metabolism ; DNA (Cytosine-5-)-Methyltransferase 1 ; DNA (Cytosine-5-)-Methyltransferases ; metabolism ; Histones ; metabolism ; Humans ; Methylation ; Phenelzine ; pharmacology
5.Effect of Pinggan Qianyang Recipe Containing Serum on Angiotensin II Induced Vascular Smooth Muscle Cell Proliferation and Migration and DNA Methylation.
Guang-wei ZHONG ; Ling WAN ; Dong-sheng WANG ; Xia FANG ; Qiong CHEN ; Ming-xuan XIE ; Tao TANG
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(5):580-585
OBJECTIVETo observe the effect of Pinggan Qianyang Recipe (PQR) on inhibiting angiotensin II (Ang II) induced proliferation and migration of vascular smooth muscle cells (VSMCs) and changes of DNA methylation.
METHODSVSMCs were cultured using tissue explant method, and PQR containing serum was prepared. Primarily cultured VSMCs were divided into four groups, the normal group, the model group, the folate group (folic acid intervention) , and the PQR group. The proliferation and migration of VSMCs was duplicated by Ang II. After 24-h Ang II induced culture, 40 microg/mL folic acid was added to the folate group for 48 h, while 5% PQR containing serum was added to the PQR group for 48 h. The cell growth curve of VSMCs was drawn by using Cell Counting Kit (CCK-8). The proliferative activity of VSMC was determined by MTT assay. The migration of VSMCs was measured by Millicell chamber. The general level of cytosine methylation in cell nucleus was detected via 5-mC antibodies immunofluorescence, and mRNA expression levels of DNA methyltransferase 1 (DNMT1) were measured by Real-time q-polymerase chain reaction (q-PCR).
RESULTSVSMCs were promoted by Ang II at 10(-6) mol/L for 24 h. Compared with the normal group, the proliferative activity and migration quantity of VSMCs obviously increased, and DNA methylation level obviously decreased (P < 0.05, P < 0.01). Compared with the model group, the cell growth, proliferative activity and migration quantity of VSMCs obviously decreased and the general DNA methylation level increased in the folate group and the PQR group (P < 0.05, P < 0.01). Compared with the normal group, the mRNA expression of DNMT1 decreased in the model group (P < 0.01). Compared with the model group, mRNA expression of DNMT1 in Ang II induced VSMCs was obviously enhanced in the folate group and the PQR group (P < 0.01).
CONCLUSIONSPQR could inhibit Ang II induced proliferation and migration of VSMCs, and cause high genomic DNA methylation level. Changes of DNA methylation might be associated with DNMT1 expression.
Angiotensin II ; pharmacology ; Cell Movement ; Cell Proliferation ; Cells, Cultured ; DNA (Cytosine-5-)-Methyltransferase 1 ; DNA (Cytosine-5-)-Methyltransferases ; metabolism ; DNA Methylation ; Drugs, Chinese Herbal ; pharmacology ; Humans ; Muscle, Smooth, Vascular ; cytology ; Myocytes, Smooth Muscle ; cytology ; drug effects
6.Effect of SET deficiency on the trichloroethylene-induced alteration of DNA methylation in human hepatic L-02 cells.
Wenxu HONG ; Aibo HUANG ; Hua XU ; Hang ZHANG ; Hongju WANG ; Qionghui ZHAO ; Jinbo YE ; Jianjun LIU
Chinese Journal of Preventive Medicine 2015;49(3):206-211
OBJECTIVETo compare the DNA methylation-related alteration induced by trichloroethylene (TCE) in human hepatic L-02 cells (L-02 cells) and SET deficient cells, and reveal the role of SET on the mechanisms in TCE-induced epigenetic pathway.
METHODSThe L-02 cells and pre-established SET deficient cells were treated with different TCE concentrations, and the changes of total cell viability, DNA methylation level and DNA methyltransferases (DNMTs) activity were measured, respectively. In addition, the TCE-induced alteration in the protein expression of DNMT1, DNMT3a and DNMT3b were analyzed by Western blotting.
RESULTSAfter treatment with TCE for 24 h, the cell proliferation level was significantly decreased in both cell lines. When concentrations of TCE were 0, 1.0, 2.0, 4.0 and 8.0 mmol/L, the proliferation levels of L-02 cells were 100.00±2.70, 83.34±2.38, 75.56±4.51, 71.67±2.77 and 66.67±1.63, respectively (F = 58.29, P < 0.001); the cell proliferation levels of SET deficient cells were 101.12±1.67, 85.01±2.33, 79.44±1.67, 78.337±3.89 and 76.11±3.33, respectively (F = 42.41, P < 0.001). When concentration of TCE reached 4.0 mmol/L, the difference of cell proliferation level between two groups was statistically significant (t = -3.51; P = 0.013). After treated by TCE for 24 h, the global DNA methylation significantly decreased in both cell lines (F value was 212.87 and 79.32, respectively, P < 0.001). The difference between two groups was not statistically significant. After treated by TCE for 24 h, the methyltransferases activities were significantly decreased in both cell cells (F values were 77.92 and 113.80, respectively, P-0.001). The SET deficiency could inhibit the decrease of methyltransferases activity under TCE treatment. When the concentration of TCE reached 8.0 mmol/L, the enzymatic activity of L-02 cells and SET deficient cells decreased to 67.61%±2.85% and 72.97%± 1.94%, respectively. The difference between two groups was statistically significant (t = -3.94, P = 0.008). After treated with TCE for 24 h, concentrations of TCE were 0, 1.0, 2.0, 4.0 and 8.0 mmol/L, and the relative protein levels of DNMT1 in normal L-02 cells increased significantly to 1.00±0.03, 1.28±0.04, 1.20±0.04, 1.62±0.05, 1.43±0.04 (F = 103.00, P < 0.001); In SET deficient cells, the expressions of DNMT1 were 1.00±0.04, 0.96±0.02, 1.19±0.05, 0.85±0.03, 0.83±0.03, which was significantly down-regulated under TCE treatment (F = 44.18, P < 0.001).
CONCLUSIONSET deficiency can significantly attenuate the TCE-induced decreases of cell viability and DNMTs activity, as well as alteration of protein expression of DNMT1 in L-02 cells, which indicated that SET was involved in the mechanism of TCE-induced cytotoxicity and epigenetic pathway in L-02 cells.
Cell Line ; Cell Survival ; DNA (Cytosine-5-)-Methyltransferase 1 ; DNA (Cytosine-5-)-Methyltransferases ; DNA Methylation ; Humans ; Liver ; Trichloroethylene
7.DNMT1 mediates chemosensitivity by reducing methylation of miRNA-20a promoter in glioma cells.
Daoyang ZHOU ; Yingfeng WAN ; Dajiang XIE ; Yirong WANG ; Junhua WEI ; Qingfeng YAN ; Peng LU ; Lianjie MO ; Jixi XIE ; Shuxu YANG ; Xuchen QI
Experimental & Molecular Medicine 2015;47(9):e182-
		                        		
		                        			
		                        			Although methyltransferase has been recognized as a major element that governs the epigenetic regulation of the genome during temozolomide (TMZ) chemotherapy in glioblastoma multiforme (GBM) patients, its regulatory effect on glioblastoma chemoresistance has not been well defined. This study investigated whether DNA methyltransferase (DNMT) expression was associated with TMZ sensitivity in glioma cells and elucidated the underlying mechanism. DNMT expression was analyzed by western blotting. miR-20a promoter methylation was evaluated by methylation-specific PCR. Cell viability and apoptosis were assessed using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and TdT-mediated dUTP-biotin nick end labeling assays, respectively. The results showed that compared with parental U251 cells, DNMT1 expression was downregulated, miR-20a promoter methylation was attenuated and miR-20a levels were elevated in TMZ-resistant U251 cells. Methyltransferase inhibition by 5-aza-2\'-deoxycytidine treatment reduced TMZ sensitivity in U251 cells. In U251/TM cells, DNMT1 expression was negatively correlated with miR-20a expression and positively correlated with TMZ sensitivity and leucine-rich repeats and immunoglobulin-like domains 1 expression; these effects were reversed by changes in miR-20a expression. DNMT1 overexpression induced an increase in U251/TM cell apoptosis that was inhibited by the miR-20a mimic, whereas DNMT1 silencing attenuated U251/TM cell apoptosis in a manner that was abrogated by miR-20a inhibitor treatment. Tumor growth of the U251/TM xenograft was inhibited by pcDNA-DNMT1 pretreatment and boosted by DNMT1-small hairpin RNA pretreatment. In summary, DNMT1 mediated chemosensitivity by reducing methylation of the microRNA-20a promoter in glioma cells.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antineoplastic Agents, Alkylating/*pharmacology/therapeutic use
		                        			;
		                        		
		                        			Apoptosis/drug effects
		                        			;
		                        		
		                        			Brain/drug effects/metabolism/pathology
		                        			;
		                        		
		                        			Brain Neoplasms/drug therapy/*genetics/pathology
		                        			;
		                        		
		                        			DNA (Cytosine-5-)-Methyltransferase/antagonists & inhibitors/*genetics/metabolism
		                        			;
		                        		
		                        			DNA Methylation
		                        			;
		                        		
		                        			Dacarbazine/*analogs & derivatives/pharmacology/therapeutic use
		                        			;
		                        		
		                        			Drug Resistance, Neoplasm
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Gene Expression Regulation, Neoplastic
		                        			;
		                        		
		                        			Glioma/drug therapy/*genetics/pathology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			MicroRNAs/*genetics
		                        			;
		                        		
		                        			Promoter Regions, Genetic
		                        			
		                        		
		                        	
8.Interaction between miR-21 and DNA methylation in different breast cancer cells.
Ying-yi ZHANG ; Wei-ping TIAN ; Mei MEI
Chinese Journal of Applied Physiology 2015;31(3):220-224
OBJECTIVETo determine the interaction between miR-21 and DNA methylation in different breast cancer cells.
METHODSFluorescence tagged miR-21 inhibitor and its negative control (NC) were transient transfected into MCF-7 and MDA-MB-231 cell, the transfection efficiency was observed using fluorescence microscopy, and the miR-21 expression level and genome DNA methylation status before and after transfection were assessed by real-time PCR and bisulfite-qMSP respectively. To investigate the regulation effect of DNA methylation on miR-21, cells were treated with 5-AZA (2.5 µmol/L) for 72 h, with dimethyl sulfoxide (DMSO) treatment as its negative control (NC), and the expression level of phosphatase and tensin homolog deleted on chromosome ten (PTEN) and AKT(also known as Protein Kinase B), two downstream genes of miR-21 were detected by Western blot.
RESULTSThe expression of miR-21 in MCF-7 cell was significantly knocked down (P < 0.01) by miR-21 inhibitor, with the genome DNA methylation level (P < 0.05) and all the three Dnmts: Dnmt1, Dnmt3a, and Dnmt3b unregulated. In contrast, the miR-21 expression in MDA-MB-231 cell was elevated ( P < 0.01) by miR-21 inhibitor, meanwhile, down- regulated of genome DNA methylation (P < 0.05) and Dnmt3b expression, upregulation of Dnmt3a were also observed. In addition, treated with 5-AZA resulted in significant increases of miR-21 expression in both MCF-7 and MDA-MB-231 cells (P < 0.01), with the protein level of PTEN increased in MCF-7 cell, which was further involved in the downregulation of AKT.
CONCLUSIONThe regulation effects of DNA methylation by transient transfection of miR-21 in MCF-7 and MDA-MB-231 cells are almost opposite, whilst the expression of miR-21 in two cell lines were all upregulated by decreased DNA methylation level and our results may provide some experimental evidences for the future development of rational therapy for different breast cancer.
Azacitidine ; Breast Neoplasms ; genetics ; Cell Line, Tumor ; DNA (Cytosine-5-)-Methyltransferase 1 ; DNA (Cytosine-5-)-Methyltransferases ; metabolism ; DNA Methylation ; Down-Regulation ; Gene Expression Regulation, Neoplastic ; Humans ; MCF-7 Cells ; MicroRNAs ; genetics ; PTEN Phosphohydrolase ; metabolism ; Promoter Regions, Genetic ; Proto-Oncogene Proteins c-akt ; metabolism ; Real-Time Polymerase Chain Reaction ; Up-Regulation
9.B-RafV600E inhibits sodium iodide symporter expression via regulation of DNA methyltransferase 1.
Yong Won CHOI ; Hyun Ju KIM ; Young Hwa KIM ; So Hyun PARK ; Yong Jun CHWAE ; Jeonghun LEE ; Euy Young SOH ; Jang Hee KIM ; Tae Jun PARK
Experimental & Molecular Medicine 2014;46(11):e120-
		                        		
		                        			
		                        			B-RafV600E mutant is found in 40-70% of papillary thyroid carcinoma (PTC) and has an important role in the pathogenesis of PTC. The sodium iodide symporter (NIS) is an integral plasma membrane glycoprotein that mediates active iodide transport into the thyroid follicular cells, and B-RafV600E has been known to be associated with the loss of NIS expression. In this study, we found that B-RafV600E inhibited NIS expression by the upregulation of its promoter methylation, and that specific regions of CpG islands of NIS promoter in B-RafV600E harboring PTC were highly methylated compared with surrounding normal tissue. Although DNA methyltransferase 3a and 3b (DNMT3a,3b) were not increased by B-RafV600E, DNMT1 expression was markedly upregulated in PTC and B-RafV600E expressing thyrocytes. Furthermore, DNMT1 expression was upregulated by B-RafV600E induced NF-kappaB activation. These results led us to conclude that NIS promoter methylation, which was induced by B-RafV600E, is one of the possible mechanisms involved in NIS downregulation in PTC.
		                        		
		                        		
		                        		
		                        			Base Sequence
		                        			;
		                        		
		                        			Carcinoma/*genetics/metabolism/pathology
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			DNA (Cytosine-5-)-Methyltransferase/analysis/*genetics/metabolism
		                        			;
		                        		
		                        			DNA Methylation
		                        			;
		                        		
		                        			Down-Regulation
		                        			;
		                        		
		                        			*Gene Expression Regulation, Neoplastic
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Molecular Sequence Data
		                        			;
		                        		
		                        			*Point Mutation
		                        			;
		                        		
		                        			Promoter Regions, Genetic
		                        			;
		                        		
		                        			Proto-Oncogene Proteins B-raf/*genetics/metabolism
		                        			;
		                        		
		                        			Symporters/analysis/*genetics/metabolism
		                        			;
		                        		
		                        			Thyroid Gland/cytology/metabolism/pathology
		                        			;
		                        		
		                        			Thyroid Neoplasms/*genetics/metabolism/pathology
		                        			;
		                        		
		                        			Up-Regulation
		                        			
		                        		
		                        	
10.Identification of abnormal gene expression in bovine transgenic somatic cell nuclear transfer embryos.
Jongki CHO ; Sungkeun KANG ; Byeong Chun LEE
Journal of Veterinary Science 2014;15(2):225-231
		                        		
		                        			
		                        			This study was conducted to investigate the expression of three genes related to early embryonic development in bovine transgenic cloned embryos. To accomplish this, development of bovine transgenic somatic cell nuclear transfer (SCNT) embryos was compared with non-transgenic embryos. Next, mRNA transcription of three specific genes (DNMT1, Hsp 70.1, and Mash2) related to early embryo development in transgenic SCNT embryos was compared between transgenic and non-transgenic SCNTs, parthenogenetic embryos, and in vitro fertilization (IVF) embryos. Transgenic SCNT embryos showed significantly lower rates of development to the blastocyst stage than non-transgenic ones. To investigate normal gene expression, RNA was extracted from ten blastocysts derived from parthenogenesis, IVF, non-transgenic, and transgenic SCNT embryos and reverse-transcribed to synthesize cDNA. The cDNA was then subjected to PCR amplification and semi-quantified. More DNMT1 mRNA was detected in the transgenic SCNT group than the other three groups. Hsp 70.1 mRNA was detected in the IVF embryos, while lower levels were found in SCNT and parthenogenetic embryos. Mash2 mRNA was present at the highest levels in transgenic SCNT embryos. In conclusion, the higher levels of methylation and lower protein synthesis after heat shock in the transgenic SCNT embryos expected based on our results may cause lower embryonic development.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Animals, Genetically Modified/genetics
		                        			;
		                        		
		                        			Basic Helix-Loop-Helix Transcription Factors/*genetics/metabolism
		                        			;
		                        		
		                        			Cattle/embryology/*genetics
		                        			;
		                        		
		                        			DNA (Cytosine-5-)-Methyltransferase/*genetics/metabolism
		                        			;
		                        		
		                        			Embryo, Mammalian/embryology/metabolism
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Fertilization in Vitro
		                        			;
		                        		
		                        			*Gene Expression Regulation, Developmental
		                        			;
		                        		
		                        			HSP70 Heat-Shock Proteins/*genetics/metabolism
		                        			;
		                        		
		                        			Nuclear Transfer Techniques/veterinary
		                        			;
		                        		
		                        			Parthenogenesis
		                        			;
		                        		
		                        			Pregnancy
		                        			;
		                        		
		                        			RNA, Messenger/genetics/metabolism
		                        			;
		                        		
		                        			Transcription, Genetic
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail