1.ToxR Is Required for Biofilm Formation and Motility of Vibrio Parahaemolyticus.
Long CHEN ; Yue QIU ; Hao TANG ; Ling Fei HU ; Wen Hui YANG ; Xiao Jue ZHU ; Xin Xiang HUANG ; Tang WANG ; Yi Quan ZHANG
Biomedical and Environmental Sciences 2018;31(11):848-850
		                        		
		                        		
		                        		
		                        			Bacterial Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Biofilms
		                        			;
		                        		
		                        			DNA-Binding Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Flagella
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Gene Expression Regulation, Bacterial
		                        			;
		                        		
		                        			Transcription Factors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Vibrio parahaemolyticus
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			physiology
		                        			
		                        		
		                        	
2.Tet2 Regulates Osteoclast Differentiation by Interacting with Runx1 and Maintaining Genomic 5-Hydroxymethylcytosine (5hmC).
Yajing CHU ; Zhigang ZHAO ; David Wayne SANT ; Ganqian ZHU ; Sarah M GREENBLATT ; Lin LIU ; Jinhuan WANG ; Zeng CAO ; Jeanette Cheng THO ; Shi CHEN ; Xiaochen LIU ; Peng ZHANG ; Jaroslaw P MACIEJEWSKI ; Stephen NIMER ; Gaofeng WANG ; Weiping YUAN ; Feng-Chun YANG ; Mingjiang XU
Genomics, Proteomics & Bioinformatics 2018;16(3):172-186
		                        		
		                        			
		                        			As a dioxygenase, Ten-Eleven Translocation 2 (TET2) catalyzes subsequent steps of 5-methylcytosine (5mC) oxidation. TET2 plays a critical role in the self-renewal, proliferation, and differentiation of hematopoietic stem cells, but its impact on mature hematopoietic cells is not well-characterized. Here we show that Tet2 plays an essential role in osteoclastogenesis. Deletion of Tet2 impairs the differentiation of osteoclast precursor cells (macrophages) and their maturation into bone-resorbing osteoclasts in vitro. Furthermore, Tet2 mice exhibit mild osteopetrosis, accompanied by decreased number of osteoclasts in vivo. Tet2 loss in macrophages results in the altered expression of a set of genes implicated in osteoclast differentiation, such as Cebpa, Mafb, and Nfkbiz. Tet2 deletion also leads to a genome-wide alteration in the level of 5-hydroxymethylcytosine (5hmC) and altered expression of a specific subset of macrophage genes associated with osteoclast differentiation. Furthermore, Tet2 interacts with Runx1 and negatively modulates its transcriptional activity. Our studies demonstrate a novel molecular mechanism controlling osteoclast differentiation and function by Tet2, that is, through interactions with Runx1 and the maintenance of genomic 5hmC. Targeting Tet2 and its pathway could be a potential therapeutic strategy for the prevention and treatment of abnormal bone mass caused by the deregulation of osteoclast activities.
		                        		
		                        		
		                        		
		                        			5-Methylcytosine
		                        			;
		                        		
		                        			analogs & derivatives
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Core Binding Factor Alpha 2 Subunit
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			DNA-Binding Proteins
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Genome
		                        			;
		                        		
		                        			Genomics
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Knockout
		                        			;
		                        		
		                        			Osteoclasts
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Proto-Oncogene Proteins
		                        			;
		                        		
		                        			physiology
		                        			
		                        		
		                        	
3.Relationship between Modulator Recognition Factor 2/AT-rich Interaction Domain 5B Gene Variations and Type 2 Diabetes Mellitus or Lipid Metabolism in a Northern Chinese Population.
Lu-Lu SUN ; Si-Jia ZHANG ; Mei-Jun CHEN ; Kazakova ELENA ; Hong QIAO
Chinese Medical Journal 2017;130(9):1055-1061
BACKGROUNDFour single nucleotide polymorphisms (SNPs) in the modulator recognition factor 2/AT-rich interaction domain 5B (MRF2/ARID5B) gene located at chromosome 10q21.2 have been shown to be associated with both type 2 diabetes mellitus (T2DM) and coronary artery disease in a Japanese cohort. This study aimed to investigate the relationship between these SNPs (rs2893880, rs10740055, rs7087507, rs10761600) and new-onset T2DM and lipid metabolism in a Northern Chinese population.
METHODSThis was a case-control study. The rs2893880, rs10740055, rs7087507, and rs10761600 genetic variants were genotyped by SNPscan and analyzed in relation to T2DM susceptibility in 2000 individuals (999 with newly diagnosed T2DM and 1001 controls without diabetes mellitus). Associations between the MRF2/ARID5B genetic models and T2DM were determined by multivariate logistic regression.
RESULTSRegarding the rs10740055 SNP, AA was associated with a higher risk of T2DM compared with codominant-type CC (adjusted by sex, age, and body mass index [BMI], P= 0.041, odds ratio [OR] = 1.421, 95% confidence interval [CI] 1.014-1.991). Meanwhile, AA individuals were at increased risk of presenting with T2DM compared with individuals with CC or a single C (adjusted by sex, age, and BMI, P= 0.034, OR = 1.366, 95% CI 1.023-1.824). With respect to rs10761600, AT contributed to a higher risk of T2DM compared with AA (adjusted by sex, age, and BMI, P= 0.013, OR = 1.585, 95% CI 1.101-2.282), while TT also increased the risk of presenting with T2DM compared with AA or A (adjusted by sex, age, and BMI, P= 0.004, OR = 1.632, 95% CI 1.166-2.284). High-density lipoprotein cholesterol (HDL-C) levels were significantly different among the three genotypes of rs7087507 in the controls (P = 0.048) (GG>GA).
CONCLUSIONSThe present results identified MRF2/ARID5B as a potential susceptibility gene for new-onset T2DM in a Northern Chinese population, while the rs7087507 SNP was associated with HDL-C levels. Further larger studies are required to validate these findings.
Asian Continental Ancestry Group ; Case-Control Studies ; DNA-Binding Proteins ; chemistry ; genetics ; metabolism ; Diabetes Mellitus, Type 2 ; genetics ; metabolism ; Genetic Association Studies ; Genetic Predisposition to Disease ; genetics ; Genotype ; Humans ; Lipid Metabolism ; genetics ; physiology ; Odds Ratio ; Polymorphism, Single Nucleotide ; genetics ; Transcription Factors ; chemistry ; genetics ; metabolism
4.Activation of NF-κB and AP-1 Mediates Hyperproliferation by Inducing β-Catenin and c-Myc in Helicobacter pylori-Infected Gastric Epithelial Cells.
Eunyoung BYUN ; Bohye PARK ; Joo Weon LIM ; Hyeyoung KIM
Yonsei Medical Journal 2016;57(3):647-651
		                        		
		                        			
		                        			PURPOSE: In the gastric mucosa of Helicobacter pylori (H. pylori)-infected patients with gastritis or adenocarcinoma, proliferation of gastric epithelial cells is increased. Hyperproliferation is related to induction of oncogenes, such as β-catenin and c-myc. Even though transcription factors NF-κB and AP-1 are activated in H. pylori-infected cells, whether NF-κB or AP-1 regulates the expression of β-catenein or c-myc in H. pylori-infected cells has not been clarified. The present study was undertaken to investigate whether H. pylori-induced activation of NF-κB and AP-1 mediates the expression of oncogenes and hyperproliferation of gastric epithelial cells. MATERIALS AND METHODS: Gastric epithelial AGS cells were transiently transfected with mutant genes for IκBα (MAD3) and c-Jun (TAM67) or treated with a specific NF-κB inhibitor caffeic acid phenethyl ester (CAPE) or a selective AP-1 inhibitor SR-11302 to suppress activation of NF-κB or AP-1, respecively. As reference cells, the control vector pcDNA was transfected to the cells. Wild-type cells or transfected cells were cultured with or without H. pylori. RESULTS: H. pylori induced activation of NF-κB and AP-1, cell proliferation, and expression of oncogenes (β-catenein, c-myc) in AGS cells, which was inhibited by transfection of MAD3 and TAM67. Wild-type cells and the cells transfected with pcDNA showed similar activities of NF-κB and AP-1, proliferation, and oncogene expression regardless of treatment with H. pylori. Both CAPE and SR-11302 inhibited cell proliferation and expression of oncogenes in H. pylori-infected cells. CONCLUSION: H. pylori-induced activation of NF-κB and AP-1 regulates transcription of oncogenes and mediates hyperproliferation in gastric epithelial cells.
		                        		
		                        		
		                        		
		                        			Blotting, Western
		                        			;
		                        		
		                        			Caffeic Acids
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			DNA, Bacterial/analysis/genetics
		                        			;
		                        		
		                        			DNA-Binding Proteins/*metabolism
		                        			;
		                        		
		                        			Epithelial Cells/*metabolism
		                        			;
		                        		
		                        			Gastric Mucosa/*metabolism/pathology
		                        			;
		                        		
		                        			Gastritis/pathology
		                        			;
		                        		
		                        			Gene Expression Regulation, Bacterial
		                        			;
		                        		
		                        			Helicobacter Infections/metabolism/pathology/physiopathology
		                        			;
		                        		
		                        			Helicobacter pylori/pathogenicity/physiology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			NF-kappa B/antagonists & inhibitors/*biosynthesis/metabolism
		                        			;
		                        		
		                        			Peptide Fragments
		                        			;
		                        		
		                        			Phenylethyl Alcohol/analogs & derivatives
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-jun
		                        			;
		                        		
		                        			Repressor Proteins
		                        			;
		                        		
		                        			Transcription Factor AP-1/*biosynthesis
		                        			;
		                        		
		                        			Transcription Factors/*metabolism
		                        			;
		                        		
		                        			beta Catenin/*metabolism
		                        			
		                        		
		                        	
5.Epigenetic Silencing of Eyes Absent 4 Gene by Acute Myeloid Leukemia 1-Eight-twenty-one Oncoprotein Contributes to Leukemogenesis in t(8;21) Acute Myeloid Leukemia.
Sai HUANG ; Meng-Meng JIANG ; Guo-Feng CHEN ; Kun QIAN ; Hong-Hao GAO ; Wei GUAN ; Jin-Long SHI ; An-Qi LIU ; Jing LIU ; Bian-Hong WANG ; Yong-Hui LI ; Li YU
Chinese Medical Journal 2016;129(11):1355-1362
BACKGROUNDThe acute myeloid leukemia 1 (AML1)-eight-twenty-one (ETO) fusion protein generated by the t(8;21)(q22;q22) translocation is considered to display a crucial role in leukemogenesis in AML. By focusing on the anti-leukemia effects of eyes absent 4 (EYA4) gene on AML cells, we investigated the biologic and molecular mechanism associated with AML1-ETO expressed in t(8;21) AML.
METHODSQualitative polymerase chain reaction (PCR), quantitative reverse transcription PCR (RT-PCR), and Western blotting analysis were used to observe the mRNA and protein expression levels of EYA4 in cell lines. Different plasmids (including mutant plasmids) of dual luciferase reporter vector were built to study the binding status of AML1-ETO to the promoter region of EYA4. Chromatin immunoprecipitation assay was used to study the epigenetic silencing mechanism of EYA4. Bisulfite sequencing was applied to detect the methylation status in EYA4 promoter region. The influence of EYA4 gene in the cell proliferation, apoptosis, and cell clone-forming ability was detected by the technique of Cell Counting Kit-8, flow cytometry, and clonogenic assay.
RESULTSEYA4 gene was hypermethylated in AML1-ETO+ patients and its expression was down-regulated by 6-fold in Kasumi-1 and SKNO-1 cells, compared to HL-60 and SKNO-1-siA/E cells, respectively. We demonstrated that AML1-ETO triggered the epigenetic silencing of EYA4 gene by binding at AML1-binding sites and recruiting histone deacetylase 1 and DNA methyltransferases. Enhanced EYA4 expression levels inhibited cellular proliferation and suppressed cell colony formation in AML1-ETO+ cell lines. We also found EYA4 transfection increased apoptosis of Kasumi-1 and SKNO-1 cells by 1.6-fold and 1.4-fold compared to negative control, respectively.
CONCLUSIONSOur study identified EYA4 gene as targets for AML1-ETO and indicated it as a novel tumor suppressor gene. In addition, we provided evidence that EYA4 gene might be a novel therapeutic target and a potential candidate for treating AML1-ETO+ t (8;21) AML.
Apoptosis ; genetics ; physiology ; Blotting, Western ; Cell Line, Tumor ; Cell Proliferation ; genetics ; physiology ; Chromatin Immunoprecipitation ; Core Binding Factor Alpha 2 Subunit ; genetics ; metabolism ; DNA Methylation ; genetics ; Epigenesis, Genetic ; genetics ; Gene Silencing ; HL-60 Cells ; Humans ; Leukemia, Myeloid, Acute ; genetics ; metabolism ; pathology ; Oncogene Proteins, Fusion ; genetics ; metabolism ; RNA, Small Interfering ; genetics ; RUNX1 Translocation Partner 1 Protein ; Radioimmunoprecipitation Assay ; Trans-Activators ; genetics ; metabolism
6.Non-catalytic roles for TET1 protein negatively regulating neuronal differentiation through srGAP3 in neuroblastoma cells.
Jie GAO ; Yue MA ; Hua-Lin FU ; Qian LUO ; Zhen WANG ; Yu-Huan XIAO ; Hao YANG ; Da-Xiang CUI ; Wei-Lin JIN
Protein & Cell 2016;7(5):351-361
		                        		
		                        			
		                        			The methylcytosine dioxygenases TET proteins (TET1, TET2, and TET3) play important regulatory roles in neural function. In this study, we investigated the role of TET proteins in neuronal differentiation using Neuro2a cells as a model. We observed that knockdown of TET1, TET2 or TET3 promoted neuronal differentiation of Neuro2a cells, and their overexpression inhibited VPA (valproic acid)-induced neuronal differentiation, suggesting all three TET proteins negatively regulate neuronal differentiation of Neuro2a cells. Interestingly, the inducing activity of TET protein is independent of its enzymatic activity. Our previous studies have demonstrated that srGAP3 can negatively regulate neuronal differentiation of Neuro2a cells. Furthermore, we revealed that TET1 could positively regulate srGAP3 expression independent of its catalytic activity, and srGAP3 is required for TET-mediated neuronal differentiation of Neuro2a cells. The results presented here may facilitate better understanding of the role of TET proteins in neuronal differentiation, and provide a possible therapy target for neuroblastoma.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Catalytic Domain
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			DNA-Binding Proteins
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Enzyme Inhibitors
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			GTPase-Activating Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Immunohistochemistry
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Microscopy, Fluorescence
		                        			;
		                        		
		                        			Neuroblastoma
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Protein Isoforms
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Proto-Oncogene Proteins
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA Interference
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA, Small Interfering
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Valproic Acid
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
7.Human INO80/YY1 chromatin remodeling complex transcriptionally regulates the BRCA2- and CDKN1A-interacting protein (BCCIP) in cells.
Jiaming SU ; Yi SUI ; Jian DING ; Fuqiang LI ; Shuang SHEN ; Yang YANG ; Zeming LU ; Fei WANG ; Lingling CAO ; Xiaoxia LIU ; Jingji JIN ; Yong CAI
Protein & Cell 2016;7(10):749-760
		                        		
		                        			
		                        			The BCCIP (BRCA2- and CDKN1A-interacting protein) is an important cofactor for BRCA2 in tumor suppression. Although the low expression of BCCIP is observed in multiple clinically diagnosed primary tumor tissues such as ovarian cancer, renal cell carcinoma and colorectal carcinoma, the mechanism of how BCCIP is regulated in cells is still unclear. The human INO80/YY1 chromatin remodeling complex composed of 15 subunits catalyzes ATP-dependent sliding of nucleosomes along DNA. Here, we first report that BCCIP is a novel target gene of the INO80/YY1 complex by presenting a series of experimental evidence. Gene expression studies combined with siRNA knockdown data locked candidate genes including BCCIP of the INO80/YY1 complex. Silencing or over-expressing the subunits of the INO80/YY1 complex regulates the expression level of BCCIP both in mRNA and proteins in cells. Also, the functions of INO80/YY1 complex in regulating the transactivation of BCCIP were confirmed by luciferase reporter assays. Chromatin immunoprecipitation (ChIP) experiments clarify the enrichment of INO80 and YY1 at +0.17 kb downstream of the BCCIP transcriptional start site. However, this enrichment is significantly inhibited by either knocking down INO80 or YY1, suggesting the existence of both INO80 and YY1 is required for recruiting the INO80/YY1 complex to BCCIP promoter region. Our findings strongly indicate that BCCIP is a potential target gene of the INO80/YY1 complex.
		                        		
		                        		
		                        		
		                        			Calcium-Binding Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Cycle Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Chromatin Assembly and Disassembly
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			DNA Helicases
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			HeLa Cells
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Multiprotein Complexes
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Nuclear Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Promoter Regions, Genetic
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Transcription, Genetic
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			YY1 Transcription Factor
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
8.Effect of the cytoplasmic DNA sensor DAI on replication of hepatitis B virus.
Qiujing WANG ; Shibo LI ; Hongping HUANG ; Shenpei LIU ; Yan YANG ; Dongliang YANG
Chinese Journal of Hepatology 2015;23(12):934-938
OBJECTIVETo explore the effect of the cytoplasmic DNA sensor DAI on replication of hepatitis B virus (HBV) and its possible mechanism.
METHODSThe hepatocyte-derived cell line HepG2 was co-transfected with DAI siRNA and the HBV1.3 replicative plasmid PHY106, and the cells were divided into two experimental groups. Six hours later, total RNA was extracted from the first group of cells and expression of IFIT1 and IL-6 were detected by real-time RT-PCR. The second group of cells was incubated for 4 days, after which the cell supernatant was collected and the HBV surface antigen (HBsAg) and envelope antigen (HBeAg) were detected by ELISA. In addition, HBV core particles were extracted and applied to southern blot assay to detect the intracellular HBV replication intermediates (rcDNA, dlDNA and ssDNA). Next, the HepG2 cells were triple transfected with siRNA targeting the type I interferon pathway molecule TBK1 and DAI simultaneously and HBV1.3, after which HBV viral proteins were detected. Two-group comparisons were made using the independent sample t-test, and more-than-2-group comparisons were made using ANOVA.
RESULTSDAI gene expression was down-regulated in response to DAI siRNA transfection. Cells with down-regulated DAI showed inhibited HBV replication (in a dose-dependent manner), accompanied by reduced levels of HBsAg (0.0195+/-0.0050 vs.
CONTROL0.3150+/-0.0200, P less than 0.05, t = 14.77) and HBeAg (0.0140+/-0.0040 vs.
CONTROL0.01235+/-0.0135, P less than 0.05, t = 7.777). No effect of down-regulated DAI was observed for the expression of IFIT1 of IL-6. siRNA-mediated down-regulation of TBK1 and DAI simultaneously led to reduced expression of HBsAg and HBeAg.
CONCLUSIONDown-regulation of DAI gene expression inhibited HBV replication and HBV protein expression, but the underlying mechanism was not related to the type I interferon or NF-kB signaling pathway.
Carrier Proteins ; metabolism ; DNA-Binding Proteins ; genetics ; metabolism ; Down-Regulation ; Gene Expression Regulation ; Hep G2 Cells ; Hepatitis B Surface Antigens ; isolation & purification ; Hepatitis B e Antigens ; isolation & purification ; Hepatitis B virus ; physiology ; Humans ; Interleukin-6 ; metabolism ; NF-kappa B ; metabolism ; Plasmids ; RNA, Small Interfering ; genetics ; Signal Transduction ; Transfection ; Virus Replication
9.Protective effect of cotransfection of A20 and HO-1 gene against the apoptosis induced by TNF-α in rat islets in vitro.
Zhong LU ; Shui-xian SHEN ; Di-jing ZHI ; Hong XU ; Li-he GUO ; Fei-hong LUO
Chinese Journal of Pediatrics 2013;51(6):420-425
OBJECTIVETo establish the method for cotransferring human A20 gene and human heme oxygenase-1 (HO-1) gene into the isolated rat islets using lentiviral transfection system, and to study the protective effect of A20 and HO-1 protein against the apoptosis induced by cycloheximide (CHX) and TNF-α, and finally to explore the underlying mechanism.
METHODThe A20 gene and HO-1 gene were cloned and inserted into the lentiviral transfection system. The efficacy of gene transfer was measured by the intensity of the enhanced green fluorescent protein (EGFP) fluorescence-positive islets. Western blot was applied to verify the expression of the A20 and HO-1 genes. To induce apoptosis in vitro, the isolated islets were treated with CHX+TNF-α, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and the fluorescence-activated cell sorting (FACS) methods were used to evaluate the apoptosis of the islet cells and Western blot was used to detect caspase-3 activation.
RESULT(1) A20 and HO-1 genes were introduced into the isolated islets by lentiviral transfection, both of the genes were highly expressed in the islets after 96 hours culture detected by Western blot method. (2) The insulin levels in the cell culture medium from A20 and/or HO-1 transgenic islets were significantly higher than that in non-transgenic controls (P < 0.01). (3)After CHX + TNF-alpha treatment, the cell culture medium insulin concentration in the A20 gene transfected group [(93.58 ± 4.12)µg/ml], HO-1 gene transfected group [(88.98 ± 4.77) µg/ml ] and A20/HO-1 co-transfected group [(103.33 ± 3.16) µg/ml] were significantly higher than that in the EGFP group [(9.03 ± 0.65) µg/ml ] and the control group [(8.86 ± 0.38) µg/ml] (P < 0.001). Minimum expression level of the activated caspase-3 was found in the A20/HO-1 co-transfected group.
CONCLUSIONThe lentiviral gene transfer system was an efficient and stable gene transfer vector, the over-expressed A20 and HO-1 protein delivered via lentivirus could preserve rats' islets function and act against the apoptosis induced by CHX and TNF-α.
Animals ; Apoptosis ; drug effects ; Caspase 3 ; metabolism ; Cell Line ; DNA-Binding Proteins ; genetics ; metabolism ; Female ; Flow Cytometry ; Genetic Vectors ; Heme Oxygenase-1 ; genetics ; metabolism ; Humans ; Insulin ; metabolism ; Intracellular Signaling Peptides and Proteins ; genetics ; metabolism ; Islets of Langerhans ; drug effects ; enzymology ; physiology ; Lentivirus ; genetics ; Male ; Nuclear Proteins ; genetics ; metabolism ; Rats ; Rats, Sprague-Dawley ; Transfection ; methods ; Tumor Necrosis Factor alpha-Induced Protein 3 ; Tumor Necrosis Factor-alpha ; pharmacology
10.Nampt is involved in DNA double-strand break repair.
Bingtao ZHU ; Xiaoli DENG ; Yifan SUN ; Lin BAI ; Zhikai XIAHOU ; Yusheng CONG ; Xingzhi XU
Chinese Journal of Cancer 2012;31(8):392-398
		                        		
		                        			
		                        			DNA double-strand break (DSB) is the most severe form of DNA damage, which is repaired mainly through high-fidelity homologous recombination (HR) or error-prone non-homologous end joining (NHEJ). Defects in the DNA damage response lead to genomic instability and ultimately predispose organs to cancer. Nicotinamide phosphoribosyltransferase (Nampt), which is involved in nicotinamide adenine dinucleotide metabolism, is overexpressed in a variety of tumors. In this report, we found that Nampt physically associated with CtIP and DNA-PKcs/Ku80, which are key factors in HR and NHEJ, respectively. Depletion of Nampt by small interfering RNA (siRNA) led to defective NHEJ-mediated DSB repair and enhanced HR-mediated repair. Furthermore, the inhibition of Nampt expression promoted proliferation of cancer cells and normal human fibroblasts and decreased β-galactosidase staining, indicating a delay in the onset of cellular senescence in normal human fibroblasts. Taken together, our results suggest that Nampt is a suppressor of HR-mediated DSB repair and an enhancer of NHEJ-mediated DSB repair, contributing to the acceleration of cellular senescence.
		                        		
		                        		
		                        		
		                        			Antigen-Antibody Complex
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Antigens, Nuclear
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Carrier Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Cellular Senescence
		                        			;
		                        		
		                        			DNA Breaks, Double-Stranded
		                        			;
		                        		
		                        			DNA End-Joining Repair
		                        			;
		                        		
		                        			DNA Repair
		                        			;
		                        		
		                        			DNA-Activated Protein Kinase
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			DNA-Binding Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Fibroblasts
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			HeLa Cells
		                        			;
		                        		
		                        			Homologous Recombination
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Ku Autoantigen
		                        			;
		                        		
		                        			Nicotinamide Phosphoribosyltransferase
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Nuclear Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA, Small Interfering
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			beta-Galactosidase
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail