1.Genomic variant surveillance of SARS-CoV-2 positive specimens using a direct PCR product sequencing surveillance (DPPSS) method.
Nicole Ann L. TUBERON ; Francisco M. HERALDE III ; Catherine C. REPORTOSO ; Arturo L. GAITANO III ; Wilmar Jun O. ELOPRE ; Kim Claudette J. FERNANDEZ
Acta Medica Philippina 2025;59(Early Access 2025):1-12
BACKGROUND AND OBJECTIVE
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the causative agent of COVID-19 has significantly challenged the public health landscape in late 2019. After almost 3 years of the first ever SARS-CoV-2 case, the World Health Organization (WHO) declared the end of this global health emergency in May 2023. Although, despite the subsequent drop of COVID-19 cases, the SARS-CoV-2 infection still exhibited multiple waves of infection, primarily attributed to the appearance of new variants. Five of these variants have been classified as Variants of Concern (VOC): Alpha, Beta, Gamma, Delta, and the most recent, Omicron. Therefore, the development of methods for the timely and accurate detection of viral variants remains fundamental, ensuring an ongoing and effective response to the disease. This study aims to evaluate the feasibility of the application of an in-house approach in genomic surveillance for the detection of SARS-CoV-2 variants using in silico designed primers.
METHODSThe primers used for the study were particularly designed based on conserved regions of certain genes in the virus, targeting distinct mutations found in known variants of SARS-CoV-2. Viral RNA extracts from nasopharyngeal samples (n=14) were subjected to quantitative and qualitative tests (Nanodrop and AGE). Selected samples were then analyzed by RT-PCR and amplicons were submitted for sequencing. Sequence alignment analysis was carried out to identify the prevailing COVID-19 variant present in the sample population.
RESULTSThe study findings demonstrated that the in-house method was able to successfully amplify conserved sequences (spike, envelope, membrane, ORF1ab) and enabled identification of the circulating SARS-CoV-2 variant among the samples. Majority of the samples were identified as Omicron variant. Three out of four designed primers effectively bound into the conserved sequence of target genes present in the sample, revealing the specific SARSCoV-2 variant. The detected mutations characterized for Omicron found in the identified lineages included K417N, S477N, and P681H which were also identified as mutations of interest. Furthermore, identification of the B.1.448 lineage which was not classified in any known variant also provided the potential of the developed in-house method in detecting unknown variants of COVID-19.
CONCLUSIONAmong the five VOCs, Omicron is the most prevalent and dominant variant. The in-house direct PCR product sequencing surveillance (DPPSS) method provided an alternative platform for SAR-CoV-2 variant analysis which is accessible and affordable than the conventional diagnostic surveillance methods and the whole genome sequencing. Further evaluation and improvements on the oligonucleotide primers may offer significant contribution to the development of a specific and direct PCRbased detection of new emerging COVID-19 variants.
Sars-cov-2 ; Polymerase Chain Reaction ; Dna Primers ; Oligonucleotide Primers
2.Serological characteristics and molecular mechanism of an individual with p phenotype.
Jiayan TU ; Jianhua ZHOU ; Jinhui WU ; Xiaozhen HONG ; Xianguo XU ; Xiuwen NI
Chinese Journal of Medical Genetics 2023;40(3):291-294
OBJECTIVE:
To analyze the serological characteristics and molecular mechanism for an individual with p phenotype.
METHODS:
An individual with p phenotype upon blood group identification at Jiaxing Blood Center in May 2021 was analyzed. ABO, RhD and P1PK blood groups and irregular antibodies in her serum were identified using conventional serological methods. The encoding region of α1, 4-galactosyltransferase gene (A4GALT) encoding P1 and Pk antigens was analyzed by polymerase chain reaction-sequence-based typing (PCR-SBT).
RESULTS:
The individual was A group, RhD positive and had a p phenotype of the P1PK blood group system. Anti-PP1Pk was discovered in her serum. Sequencing analysis revealed that she has harbored a homozygous c.343A>T variant of the A4GALT gene.
CONCLUSION
The homozygous c.343A>T variant of the A4GALT gene probably underlay the p phenotype in this individual.
Female
;
Animals
;
Blood Group Antigens
;
Homozygote
;
Phenotype
;
Polymerase Chain Reaction
;
Sequence Analysis, DNA
3.The application of PCR-SSP with the serology in identification and genotyping of ABO ambiguous blood group.
Yanyan SONG ; Yuxi ZHANG ; Xinrui CAO ; Xiaonan YU ; Wei ZHENG
Chinese Journal of Cellular and Molecular Immunology 2023;39(9):824-827
Objective To investigate the effect of blood group serology and polymerase chain reaction with sequence-specific primers (PCR-SSP) on identification and genotyping of ambiguous ABO blood group. Methods Eighty suspicious ABO blood group samples were identified by serology and polymerase chain reaction with sequence-specific primers (PCR-SSP). The final blood group type and the strategy of the transfusion of each case were determined according to the results of serology and PCR-SSP. Results 40 cases were confirmed to be subtypes, and the remaining 40 cases were normal types with weakened antigens or missing antibodies due to other reasons. The results of molecular genetic blood group typing based on PCR-SSP were 41 cases of subtypes (There were 3 discrepancies between two methods: one was Ael identified by serological methods, while its gene type was O2O2; one was common type O, while its gene type was BO1; one was type A, while its gene type was AB.) and 39 cases of normal ones. Conclusion Genotyping technology combined with serological typing has an important significance in identification of ABO blood groups.
ABO Blood-Group System/genetics*
;
Genotype
;
Polymerase Chain Reaction
;
Antibodies
;
DNA Primers
4.Comparative of Forensic DNA Identification Using Cell Lysis Method and Magnetic Beads Method.
Jia-Jun SHI ; Dan WU ; Tie-Zhu LIU ; Si-Jing HAO ; Bi-Cheng MENG ; Shi-Lin LI ; Ya-Nan LIU
Journal of Forensic Medicine 2023;39(1):45-49
OBJECTIVES:
To compare the effects of cell lysis method and magnetic beads method in forensic DNA identification and to explore these two methods in forensic DNA identification.
METHODS:
The genome DNA of THP-1 cells in different quantities was extracted by the cell lysis method and magnetic beads method, and the DNA content was quantified by real-time quantitative PCR. The cell lysis method and magnetic beads method were used to type the STR of human blood with different dilution ratios.
RESULTS:
When the numbers of THP-1 cell were 100, 400 and 800, the DNA content extracted by cell lysis method were (1.219±0.334), (5.081±0.335), (9.332±0.318) ng, respectively; and the DNA content extracted by magnetic beads method were (1.020±0.281), (3.634±0.482), (7.896±0.759) ng, respectively. When the numbers of THP-1 cells were 400 and 800, the DNA content extracted by the cell lysis method was higher than that by the magnetic beads method. The sensitivity of cell lysis method and magnetic beads method was similar in STR typing of human blood at different dilution ratios. Complete STR typing could be obtained at 100, 300 and 500-fold dilutions of blood samples, but could not be detected at 700-fold dilution. STR typing of undiluted human blood could not be detected by cell lysis method.
CONCLUSIONS
The cell lysis method is easy to operate and can retain template DNA to the maximum extend. It is expected to be suitable for trace blood evidence tests.
Humans
;
Forensic Medicine
;
DNA/genetics*
;
Real-Time Polymerase Chain Reaction
;
Magnetic Phenomena
;
DNA Fingerprinting/methods*
;
Microsatellite Repeats
5.Forensic Validation and Application Evaluation of IDentifier DNA Typing Kit (Yan-Huang34).
Lin-Lin GAO ; Wei XIE ; Su-Juan ZHU ; Da LI ; Qin WANG ; Liang HONG ; You-Ying LI
Journal of Forensic Medicine 2023;39(6):579-585
OBJECTIVES:
To investigate the technical performance of IDentifier DNA typing kit (YanHuang34) and evaluate its forensic application value.
METHODS:
Following the Criterion of Forensic Science Human Fluorescence STR Multiplex Amplification Reagent (GB/T 37226-2018), IDentifier DNA typing kit (YanHuang34) was verified in 11 aspects of species specificity, veracity, sensibility, adaptability, inhibitor tolerance, consistency, balance, reaction condition verification, mixed samples, stability and inter batch consistency. The system efficiency of IDentifier DNA typing kit (YanHuang34) was compared with the PowerPlex® Fusion 6C System, VersaPlex® 27PY System and VeriFilerTM Plus PCR Amplification Kit. The IDentifier DNA typing kit (YanHuang34) was used to detect the swabs of biological samples in daily cases and the STR performances were observed.
RESULTS:
IDentifier DNA typing kit (YanHuang34) had good species specificity, veracity, adaptability, inhibitor tolerance and balance. The sensibility was up to 0.062 5 ng. It was able to detect different types of samples, degraded samples and inhibitor mixed samples. Complete DNA typing could be obtained for samples with the mixture ratio less than 4∶1. The system efficiency of IDentifier DNA typing kit (YanHuang34) was very high, with TDP up to 1-1.08×10-37, CPEtrio and CPEduo up to 1-5.47×10-14 and 1-6.43×10-9, respectively. For the touched biological samples in actual cases, the effective detection rate was 21.05%. The system efficiency of kinship, single parent and full sibling identifications was effectively improved.
CONCLUSIONS
The IDentifier DNA typing kit (YanHuang34) is adaptive to the GB/T 37226-2018 requirements. It can be used for individual identification and paternity identification, and is suitable for application in the field of forensic science.
Humans
;
DNA Fingerprinting
;
Polymerase Chain Reaction
;
Microsatellite Repeats
;
Paternity
;
Species Specificity
6.Characterization of a family B DNA polymerase from Thermococcus eurythermalis A501 and its application in PCR.
Chinese Journal of Biotechnology 2022;38(2):807-819
DNA polymerases are widely used in PCR and play important roles in life science research and related fields. Development of high-performance DNA polymerases is of great commercial interest as the current commercial DNA polymerases could not fully satisfy the requirements of scientific research. In this study, we cloned and expressed a family B DNA polymerase (NCBI accession number TEU_RS04875) from Thermococcus eurythermalis A501, characterized its enzymatic property and evaluated its application in PCR. The recombinant Teu-PolB was expressed in E. coli and purified with affinity chromatography and ion-exchange chromatography. The enzymatic properties of Teu-PolB were characterized using fluorescence-labeled oligonucleotides as substrates. The application potential of Teu-PolB in PCR was evaluated using the phage λ genomic DNA as a template. Teu-PolB has DNA polymerase and 3'→5' exonuclease activities, and is highly thermostable with a half-life of 2 h at 98 ℃. The most suitable PCR buffer is consisted of 50 mmol/L Tris-HCl pH 8.0, 2.5 mmol/L MgCl2, 60 mmol/L KCl, 10 mmol/L (NH4)2SO4, 0.015% Triton X-100 and 0.01% BSA, and the optimal extension temperature is 68 ℃. Under the optimized conditions, a 4 kb target fragment was successfully amplified with an extension rate of 2 kb/min. The yield of the Teu-PolB amplified-DNA was lower than that of Taq DNA polymerase, but its extension rate and fidelity was higher than that of Taq and Pfu DNA polymerases. The biochemical properties of Teu-PolB demonstrate that this enzyme can be used in PCR amplification with high thermostability, good salt tolerance, high extension rate and high fidelity.
DNA-Directed DNA Polymerase/genetics*
;
Escherichia coli/genetics*
;
Polymerase Chain Reaction/methods*
;
Temperature
;
Thermococcus/genetics*
7.Role of DNMT3a in Hydroquinone-Induced Hematopoietic Stem Cell Toxicity.
Kun WU ; Bo NIE ; Jin-Rong YANG ; Zheng-Xin HE ; Shen-Ju CHENG ; Yan-Hong LI ; Zhen JIN ; Ming-Xia SHI
Journal of Experimental Hematology 2022;30(2):607-612
OBJECTIVE:
To investigate the regulatory effect and mechanism of DNA methyltransferase 3A (DNMT3a) in hydroquinone-induced hematopoietic stem cell toxicity.
METHODS:
Cells (HSPC-1) were divided into 4 groups, that is A: normal HSPC-1; B: HQ-intervented HSPC-1; C: group B + pcDNA3 empty vector; D: group B + pcDNA3- DNMT3a. RT-qPCR and Western blot were used to detect the expression levels of DNMT3a and PARP-1 mRNA and protein, respectively. Cell morphology was observe; Cell viability and apoptosis rate of HSPC-1 were detected by MTT and flow cytometry, respectively.
RESULTS:
Compared with group A, the expression levels of DNMT3a mRNA and protein in HSPC-1 of group B were decreased, while PARP-1 mRNA and protein were increased (P<0.05); there was no significant difference in the above indexes between group C and group B; compared with group B, the expression levels of DNMT3a mRNA and protein showed increased, while PARP-1 mRNA and protein were decreased significantly in cells of group D transfected with DNMT3a (P<0.05). Cells in each group were transfected with DNMT3a and cultured for 24 h, HSPC-1 in group A showed high density growth and mononuclear fusion growth, while the number of HSPC-1 in group B and C decreased and grew slowly. Compared with group B and C, the cell growth rate of group D was accelerated. The MTT analysis showed that cell viability of HSPC-1 in group B were lower than that of group A at 24 h, 48 h and 72 h (P<0.05); after transfected with DNMT3a, the cell viability of HSPC-1 in group D were higher than that of group B at 24 h, 48 h and 72 h (P<0.05). The apoptosis rate of cells in group B was significantly higher than that of group A (P<0.001), while the apoptosis rate in group D was lower than that of group B (P<0.001).
CONCLUSION
DNMT3a may be involved in the damage of hematopoietic stem cells induced by hydroquinone, which may be related to the regulation of PARP-1 activity by hydroquinone-inhibited DNMT3a.
Apoptosis
;
Cell Proliferation
;
DNA Methyltransferase 3A
;
Hematopoietic Stem Cells/drug effects*
;
Humans
;
Hydroquinones/toxicity*
;
Poly (ADP-Ribose) Polymerase-1
;
RNA, Messenger/metabolism*
8.The Viral Load of Epstein-Barr Virus in Blood of Children after Hematopoietic Stem Cell Transplantation.
Wen Jun WANG ; Shun Qiao FENG ; Feng HE ; Hai Jun DU ; Miao FENG ; Rui Fang WANG ; Guo Yong MEI ; Mi LIU ; Rong LIU ; Hai Lan YAO ; Jun HAN
Biomedical and Environmental Sciences 2022;35(9):804-810
OBJECTIVE:
To detect the Epstein-Barr virus (EBV) viral load of children after hematopoietic stem cell transplantation (HSCT) using chip digital PCR (cdPCR).
METHODS:
The sensitivity of cdPCR was determined using EBV plasmids and the EBV B95-8 strain. The specificity of EBV cdPCR was evaluated using the EBV B95-8 strain and other herpesviruses (herpes simplex virus 1, herpes simplex virus 2, varicella zoster virus, human cytomegalovirus, human herpesvirus 6, and human herpesvirus 7). From May 2019 to September 2020, 64 serum samples of children following HSCT were collected. EBV infection and the viral load of serum samples were detected by cdPCR. The epidemiological characteristics of EBV infections were analyzed in HSCT patients.
RESULTS:
The limit of detection of EBV cdPCR was 110 copies/mL, and the limit of detection of EBV quantitative PCR was 327 copies/mL for the pUC57-BALF5 plasmid. The result of EBV cdPCR was up to 121 copies/mL in the EBV B95-8 strain, and both were more sensitive than that of quantitative PCR. Using cdPCR, the incidence of EBV infection was 18.75% in 64 children after HSCT. The minimum EBV viral load was 140 copies/mL, and the maximum viral load was 3,209 copies/mL using cdPCR. The average hospital stay of children with EBV infection (184 ± 91 days) was longer than that of children without EBV infection (125 ± 79 days), P = 0.026.
CONCLUSION
EBV cdPCR had good sensitivity and specificity. The incidence of EBV infection was 18.75% in 64 children after HSCT from May 2019 to September 2020. EBV cdPCR could therefore be a novel method to detect EBV viral load in children after HSCT.
Child
;
DNA, Viral/analysis*
;
Epstein-Barr Virus Infections/epidemiology*
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Herpesvirus 4, Human/genetics*
;
Humans
;
Real-Time Polymerase Chain Reaction
;
Viral Load
9.IGF-1 Accelerates Cell Aging by Inhibiting POLD1 Expression.
Yu Li HOU ; Yi Fei WANG ; Qiao SONG ; Xiao Min ZHANG ; Jing LIU ; Ya Qi WANG ; Yu Ting CUI ; Jing Xuan FU ; Zi Yi FENG ; Chi ZHANG ; Pei Chang WANG
Biomedical and Environmental Sciences 2022;35(11):981-991
OBJECTIVE:
The individual cascades of the insulin-like growth factor-1 (IGF-1) signaling pathway and the molecular mechanism of aging have not been fully clarified. In the current study, we explored the effect of DNA polymerase delta 1 (POLD1) on the IGF-1 signaling pathway in cell aging.
METHODS:
First, we analyzed the relationship between IGF-1 and POLD1 expression in aging. To investigate the effect of IGF-1 on POLD1 expression and aging, the 2BS cells were incubated with young-age or old-age human serum, IGF-1 protein, or linsitinib. Next, the effect of IGF-1 on aging was examined in the 2BS cells with increased or decreased POLD1 expression to clarify the molecular mechanism.
RESULTS:
In this study, we found that IGF-1 expression increased and POLD1 expression decreased with aging in human serum and hippocampal tissues of SAMP8 mice, and a negative relationship between IGF-1 and POLD1 expression was observed. Furthermore, the cells cultured with old-age human serum or IGF-1 showed lower POLD1 expression and more pronounced senescence characteristics, and the effect could be reversed by treatment with linsitinib or overexpression of POLD1, while the effect of linsitinib on cell aging could be reversed with the knockdown of POLD1.
CONCLUSION
Taken collectively, our findings demonstrate that IGF-1 promotes aging by binding to IGF-1R and inhibiting the expression of POLD1. These findings offer a new target for anti-aging strategies.
Humans
;
Animals
;
Mice
;
Insulin-Like Growth Factor I/pharmacology*
;
Cellular Senescence
;
Aging
;
Hippocampus
;
DNA Polymerase III
10.Hi-Meth: a platform for high-throughput detection of site-specific DNA methylation.
Huiying LI ; Qing LIU ; Min GUO ; Kejian WANG ; Changjie YAN ; Chun WANG
Chinese Journal of Biotechnology 2022;38(8):3049-3061
Cytosine methylation is one of the major types of DNA epigenetic modifications and plays an important role in maintaining normal cell function and regulating gene expression. Bisulfite sequencing PCR (BSP) based cloning and sequencing is a general method for detecting DNA methylation at specific sites, which can clarify the methylation status of each CpG site in the target fragment. However, this method requires large amounts of single-clonal sequencing, which is complicated to operate, time consuming and expensive. Therefore, the development of an accurate, efficient and convenient DNA methylation detection technology is of great significance to improve the efficiency of epigenetic research. Based on the high-throughput mutation detection platform Hi-TOM (high-throughput tracking of mutations) developed by our group, we further established a site-specific DNA methylation high-throughput detection platform Hi-Meth (High-throughput Detection of DNA Methylation). After bisulfite treatment of DNA samples, the specific site-specific DNA methylation analysis results could be obtained through the Hi-Meth platform by performing only one round of PCR amplification. Using the Hi-Meth platform, the DNA methylation status of two promoter regions of rice were detected. The DNA methylation results from Hi-Meth were consistent with the results from BSP-based method. Thus, site-specific DNA methylation analysis results could be obtained accurately and conveniently through the Hi-Meth platform. In conclusion, Hi-Meth provides an important methylation detection platform for specific DNA regions, which has important significance for epigenetic research.
DNA Methylation
;
Epigenesis, Genetic
;
Epigenomics
;
High-Throughput Nucleotide Sequencing/methods*
;
Polymerase Chain Reaction
;
Sequence Analysis, DNA/methods*


Result Analysis
Print
Save
E-mail