1.NEDDylation antagonizes ubiquitination of proliferating cell nuclear antigen and regulates the recruitment of polymerase η in response to oxidative DNA damage.
Junhong GUAN ; Shuyu YU ; Xiaofeng ZHENG
Protein & Cell 2018;9(4):365-379
NEDDylation has been shown to participate in the DNA damage pathway, but the substrates of neural precursor cell expressed developmentally downregulated 8 (NEDD8) and the roles of NEDDylation involved in the DNA damage response (DDR) are largely unknown. Translesion synthesis (TLS) is a damage-tolerance mechanism, in which RAD18/RAD6-mediated monoubiquitinated proliferating cell nuclear antigen (PCNA) promotes recruitment of polymerase η (polη) to bypass lesions. Here we identify PCNA as a substrate of NEDD8, and show that E3 ligase RAD18-catalyzed PCNA NEDDylation antagonizes its ubiquitination. In addition, NEDP1 acts as the deNEDDylase of PCNA, and NEDP1 deletion enhances PCNA NEDDylation but reduces its ubiquitination. In response to HO stimulation, NEDP1 disassociates from PCNA and RAD18-dependent PCNA NEDDylation increases markedly after its ubiquitination. Impairment of NEDDylation by Ubc12 knockout enhances PCNA ubiquitination and promotes PCNA-polη interaction, while up-regulation of NEDDylation by NEDD8 overexpression or NEDP1 deletion reduces the excessive accumulation of ubiquitinated PCNA, thus inhibits PCNA-polη interaction and blocks polη foci formation. Moreover, Ubc12 knockout decreases cell sensitivity to HO-induced oxidative stress, but NEDP1 deletion aggravates this sensitivity. Collectively, our study elucidates the important role of NEDDylation in the DDR as a modulator of PCNA monoubiquitination and polη recruitment.
DNA Damage
;
drug effects
;
DNA Repair
;
genetics
;
DNA Replication
;
genetics
;
DNA-Binding Proteins
;
genetics
;
DNA-Directed DNA Polymerase
;
genetics
;
Endopeptidases
;
genetics
;
Gene Knockout Techniques
;
Humans
;
Hydrogen Peroxide
;
toxicity
;
NEDD8 Protein
;
genetics
;
Oxidative Stress
;
genetics
;
Proliferating Cell Nuclear Antigen
;
genetics
;
Ubiquitin-Conjugating Enzymes
;
genetics
;
Ubiquitin-Protein Ligases
;
genetics
;
Ubiquitination
;
genetics
;
Ultraviolet Rays
2.Induction of robust senescence-associated secretory phenotype in mouse NIH-3T3 cells by mitomycin C.
Wei-Xing HUANG ; Xiao-Xuan GUO ; Zhong-Zhi PENG ; Chun-Liang WENG ; Chun-Yan HUANG ; Ben-Yan SHI ; Jie YANG ; Xiao-Xin LIAO ; Xiao-Yi LI ; Hui-Ling ZHENG ; Xin-Guang LIU ; Xue-Rong SUN
Acta Physiologica Sinica 2017;69(1):33-40
Senescence-associated secretory phenotype (SASP) is often a concomitant result of cell senescence, embodied by the enhanced function of secretion. The SASP factors secreted by senescent cells include cytokines, proteases and chemokines, etc, which can exert great influence on local as well as systemic environment and participate in the process of cell senescence, immunoregulation, angiogenesis, cell proliferation and tumor invasion, etc. Relative to the abundance of SASP models in human cells, the in vitro SASP model derived from mouse cells is scarce at present. Therefore, the study aimed to establish a mouse SASP model to facilitate the research in the field. With this objective, we treated the INK4a-deficient mouse NIH-3T3 cells and the wildtype mouse embryonic fibroblasts (MEF) respectively with mitomycin C (MMC), an anticarcinoma drug which could induce DNA damage. The occurring of cell senescence was evaluated by cell morphology, β-gal staining, integration ratio of EdU and Western blot. Quantitative RT-PCR and ELISA were used to detect the expression and secretion of SASP factors, respectively. The results showed that, 8 days after the treatment of NIH-3T3 cells with MMC (1 μg/mL) for 12 h or 24 h, the cells became enlarged and the ratios of β-gal-positive (blue-stained) cells significantly increased, up to 77.4% and 90.4%, respectively. Meanwhile, the expression of P21 protein increased and the integration ratios of EdU significantly decreased (P < 0.01). Quantitative RT-PCR detection showed that the mRNA levels of several SASP genes, including IL-6, TNF-α, IL-1α and IL-1β increased evidently. ELISA detection further observed an enhanced secretion of IL-6 (P < 0.01). On the contrary, although wildtype MEF could also be induced into senescence by MMC treatment for 12 h or 24 h, embodied by the enlarged cell volume, increased ratios of β-gal-positive cells (up to 71.7% and 80.2%, respectively) and enhanced expression of P21 protein, the secretion of IL-6 displayed no significant change. Our study indicated that, although MMC could induce senescence in both mouse NIH-3T3 cells and wildtype MEF, only senescent NIH-3T3 cells displayed the canonical SASP phenomena. Current study suggested that senescent NIH-3T3 cells might be an appropriate in vitro SASP model of mouse cells.
Animals
;
Cell Proliferation
;
Cellular Senescence
;
drug effects
;
Cyclin-Dependent Kinase Inhibitor p21
;
genetics
;
metabolism
;
Cytokines
;
genetics
;
metabolism
;
DNA Damage
;
Fibroblasts
;
drug effects
;
Interleukin-6
;
secretion
;
Mice
;
Mitomycin
;
pharmacology
;
NIH 3T3 Cells
;
Phenotype
3.Poly(ADP-ribosyl)ation of Apoptosis Antagonizing Transcription Factor Involved in Hydroquinone-Induced DNA Damage Response.
Xiao Xuan LING ; Jia Xian LIU ; Lin YUN ; Yu Jun DU ; Shao Qian CHEN ; Jia Long CHEN ; Huan Wen TANG ; Lin Hua LIU
Biomedical and Environmental Sciences 2016;29(1):80-84
The molecular mechanism of DNA damage induced by hydroquinone (HQ) remains unclear. Poly(ADP-ribose) polymerase-1 (PARP-1) usually works as a DNA damage sensor, and hence, it is possible that PARP-1 is involved in the DNA damage response induced by HQ. In TK6 cells treated with HQ, PARP activity as well as the expression of apoptosis antagonizing transcription factor (AATF), PARP-1, and phosphorylated H2AX (γ-H2AX) were maximum at 0.5 h, 6 h, 3 h, and 3 h, respectively. To explore the detailed mechanisms underlying the prompt DNA repair reaction, the above indicators were investigated in PARP-1-silenced cells. PARP activity and expression of AATF and PARP-1 decreased to 36%, 32%, and 33%, respectively, in the cells; however, γ-H2AX expression increased to 265%. Co-immunoprecipitation (co-IP) assays were employed to determine whether PARP-1 and AATF formed protein complexes. The interaction between these proteins together with the results from IP assays and confocal microscopy indicated that poly(ADP-ribosyl)ation (PARylation) regulated AATF expression. In conclusion, PARP-1 was involved in the DNA damage repair induced by HQ via increasing the accumulation of AATF through PARylation.
Antioxidants
;
toxicity
;
Apoptosis Regulatory Proteins
;
genetics
;
metabolism
;
Cell Line
;
DNA Damage
;
drug effects
;
Gene Expression Regulation
;
drug effects
;
Gene Silencing
;
Histones
;
genetics
;
metabolism
;
Humans
;
Hydroquinones
;
toxicity
;
Poly (ADP-Ribose) Polymerase-1
;
Poly(ADP-ribose) Polymerases
;
genetics
;
metabolism
;
Protein Transport
;
Repressor Proteins
;
genetics
;
metabolism
4.Ginsenoside Rd Attenuates DNA Damage by Increasing Expression of DNA Glycosylase Endonuclease VIII-like Proteins after Focal Cerebral Ischemia.
Long-Xiu YANG ; Xiao ZHANG ; Gang ZHAO
Chinese Medical Journal 2016;129(16):1955-1962
BACKGROUNDGinsenoside Rd (GSRd), one of the main active ingredients in traditional Chinese herbal Panax ginseng, has been found to have therapeutic effects on ischemic stroke. However, the molecular mechanisms of GSRd's neuroprotective function remain unclear. Ischemic stroke-induced oxidative stress results in DNA damage, which triggers cell death and contributes to poor prognosis. Oxidative DNA damage is primarily processed by the base excision repair (BER) pathway. Three of the five major DNA glycosylases that initiate the BER pathway in the event of DNA damage from oxidation are the endonuclease VIII-like (NEIL) proteins. This study aimed to investigate the effect of GSRd on the expression of DNA glycosylases NEILs in a rat model of focal cerebral ischemia.
METHODSNEIL expression patterns were evaluated by quantitative real-time polymerase chain reaction in both normal and middle cerebral artery occlusion (MCAO) rat models. Survival rate and Zea-Longa neurological scores were used to assess the effect of GSRd administration on MCAO rats. Mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) damages were evaluated by the way of real-time analysis of mutation frequency. NEIL expressions were measured in both messenger RNA (mRNA) and protein levels by quantitative polymerase chain reaction and Western blotting analysis. Apoptosis level was quantitated by the expression of cleaved caspase-3 and terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling assay.
RESULTSWe found that GSRd administration reduced mtDNA and nDNA damages, which contributed to an improvement in survival rate and neurological function; significantly up-regulated NEIL1 and NEIL3 expressions in both mRNA and protein levels of MCAO rats; and reduced cell apoptosis and the expression of cleaved caspase-3 in rats at 7 days after MCAO.
CONCLUSIONSOur results indicated that the neuroprotective function of GSRd for acute ischemic stroke might be partially explained by the up-regulation of NEIL1 and NEIL3 expressions.
Animals ; Blotting, Western ; Brain Ischemia ; drug therapy ; enzymology ; DNA Damage ; drug effects ; DNA Glycosylases ; genetics ; metabolism ; Ginsenosides ; therapeutic use ; Infarction, Middle Cerebral Artery ; drug therapy ; enzymology ; Male ; N-Glycosyl Hydrolases ; genetics ; metabolism ; Rats ; Rats, Sprague-Dawley
5.Vitamin C alleviates aging defects in a stem cell model for Werner syndrome.
Ying LI ; Weizhou ZHANG ; Liang CHANG ; Yan HAN ; Liang SUN ; Xiaojun GONG ; Hong TANG ; Zunpeng LIU ; Huichao DENG ; Yanxia YE ; Yu WANG ; Jian LI ; Jie QIAO ; Jing QU ; Weiqi ZHANG ; Guang-Hui LIU
Protein & Cell 2016;7(7):478-488
Werner syndrome (WS) is a premature aging disorder that mainly affects tissues derived from mesoderm. We have recently developed a novel human WS model using WRN-deficient human mesenchymal stem cells (MSCs). This model recapitulates many phenotypic features of WS. Based on a screen of a number of chemicals, here we found that Vitamin C exerts most efficient rescue for many features in premature aging as shown in WRN-deficient MSCs, including cell growth arrest, increased reactive oxygen species levels, telomere attrition, excessive secretion of inflammatory factors, as well as disorganization of nuclear lamina and heterochromatin. Moreover, Vitamin C restores in vivo viability of MSCs in a mouse model. RNA sequencing analysis indicates that Vitamin C alters the expression of a series of genes involved in chromatin condensation, cell cycle regulation, DNA replication, and DNA damage repair pathways in WRN-deficient MSCs. Our results identify Vitamin C as a rejuvenating factor for WS MSCs, which holds the potential of being applied as a novel type of treatment of WS.
Animals
;
Ascorbic Acid
;
pharmacology
;
Cell Cycle Checkpoints
;
drug effects
;
Cell Line
;
Cellular Senescence
;
drug effects
;
DNA Damage
;
DNA Repair
;
drug effects
;
DNA Replication
;
drug effects
;
Disease Models, Animal
;
Heterochromatin
;
metabolism
;
pathology
;
Humans
;
Mesenchymal Stem Cells
;
metabolism
;
pathology
;
Mice
;
Nuclear Lamina
;
metabolism
;
pathology
;
Reactive Oxygen Species
;
metabolism
;
Telomere Homeostasis
;
drug effects
;
Werner Syndrome
;
drug therapy
;
genetics
;
metabolism
6.Optimization of sperm alkaline single-cell gel electrophoresis.
Shuang DENG ; Lang FAN ; Xi-yan WU ; Yan ZHU ; Ke-qian XU
National Journal of Andrology 2015;21(2):124-131
OBJECTIVETo investigate the main factors that influence the results of sperm alkaline single-cell gel electrophoresis (SCGE), optimize the conditions, and standardize its procedures.
METHODSUsing alkaline SCGE, we detected the DNA fragments of sperm treated with different concentrations of H2O2 and determined the influences of the number of agarose gel layers, pH during DNA unwinding and electrophoresis, the time of DNA unwinding and electrophoresis, and cumulative sperm number on the results of sperm alkaline SCGE. Then we optimized the procedures, analyzed the repeatability of the optimized method, and examined 40 semen samples using the method.
RESULTSThree agarose gel layers could reduce the background. The optimal pH during DNA unwinding and electrophoresis was 10, and the best times for DNA unwinding and electrophoresis were 40 min and 30 min, respectively. Fifty sperm were adequate to ensure the reliability of the results. Based on the percentage of tail DNA, the intra- and inter-assay repeatabilities of the optimized sperm alkaline SCGE were 3.12% and 7.13%, and by the DNA damage score, they were 2.38% and 6.09%, respectively. Sperm DNA fragments were significantly increased in the infertile patients with oligoasthenoteratozoospermia as compared with healthy fertile males (P <0.05).
CONCLUSIONThe optimized sperm alkaline SCGE, highly repeatable and easy to be standardized, can be applied to the clinical detection of sperm DNA fragmentation in infertile men.
Asthenozoospermia ; genetics ; Comet Assay ; standards ; DNA Damage ; DNA Fragmentation ; Humans ; Hydrogen Peroxide ; toxicity ; Male ; Oligospermia ; genetics ; Oxidants ; toxicity ; Reproducibility of Results ; Sperm Count ; Spermatozoa ; drug effects ; enzymology ; Time Factors
7.Effects of indium exposure on relative content of mitochondrial ND1 gene in human peripheral blood lymphocytes in vitro.
Dianpeng WANG ; Xiangli YANG ; Yanfang ZHANG ; Haiyan TANG ; Zhimin ZHANG ; Zhimin LI ; E-mail: LIZHIMIN567@SINA.COM. ; Changye HUI ; Juan YI ; Wen ZHANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2015;33(8):566-568
OBJECTIVETo study the effects of indium exposure on the relative content of mitochondrial ND1 gene in lymphocytes.
METHODSVenous blood was obtained from 14 healthy workers and anticoagulated with heparin. Blood lymphocytes were separated and divided into three tube cultures. For two tubes in the exposed group, indium chloride was added to final concentrations of 0.2 mmol/L and 0.8 mmol/L, respectively. For one tube in the control group, an equal volume of normal saline solution was added. After incubation for 72 h, the relative content of mitochondrial gene in each group was determined using quantitative real-time PCR.
RESULTSLymphocytes exposed to 0.8 mmol/L indium chloride had a significantly higher relative content of mitochondrial gene than those exposed to 0.2 mmol/L indium chloride and those in the control group (P < 0.05, P < 0.05).
CONCLUSIONLymphocytes exposed to a high concentration of indium and its compounds have an elevated relative content of mitochondrial ND1 gene, indicating increased oxidative DNA damage induced by exposure to a high concentration of indium and its compounds.
DNA Damage ; drug effects ; DNA, Mitochondrial ; genetics ; Humans ; Indium ; toxicity ; Lymphocytes ; drug effects ; NADH Dehydrogenase ; genetics ; Occupational Exposure
8.Correlation of single-cell gel electrophoresis and mitomycin C-induced chromosomal breakage for chromosomal instabiligy in children with Fanconi anemia.
Li ZHANG ; Qiang LIU ; Yao ZOU ; Xiao-ming LIU ; Jia-yuan ZHANG ; Shu-chun WANG ; Xiao-juan CHEN ; Ye GUO ; Wen-yu YANG ; Min RUAN ; Tian-feng LIU ; Fang LIU ; Xiao-jin CAI ; Yu-mei CHEN ; Xiao-fan ZHU
Chinese Journal of Pediatrics 2013;51(2):122-125
OBJECTIVEFanconi anemia (FA) is characterized by bone marrow failure, congenital abnormalities and predisposition to neoplasia. Hypersensitivity of FA cells to the clastogenic effect of mitomycin C (MMC) provides a unique marker for the diagnosis before the beginning of hematological manifestations. The aim of this study was to evaluate the relationship between Single-Cell Gel Electrophoresis (SCGE) and mitomycin C-induced chromosomal breakage in children with FA.
METHODBetween January 2007 and June 2011, 248 children (< 15 years) with hypocytosis were included. Chromosomal breakage was induced by MMC 0 ng/ml, 40 ng/ml, and 80 ng/ml. SCGE was performed at the same time. We analyzed the results of the two methods and compared with each other. The receiver operating characteristic (ROC) curve was used to evaluate the parameters in SCGE.
RESULTSeventeen patients were diagnosed as FA and 231 as non-FA. Chromosomal breakage was found to be significantly higher in FA patients [(32.2 ± 4.8)%] than non-FA [(19.9 ± 3.0)%] and controls[(21.6 ± 4.8)%] when induced by MMC 80 ng/ml. The parameters of SCGE were significantly different between FA patients and non-FA or controls. All the parameters were rectilinearly correlated with MMC (P = 0.000). The most closely correlated parameter was the rate of comet cell (r = 0.848, P = 0.000). The results of ROC curves suggested the comet cell rate (0.999) was more important.
CONCLUSIONSCGE might be used to discriminate between FA and non-FA individuals. The relationship between SCGE and MMC-induced chromosomal breakage was significant. The rate of comet cell was the important parameter.
Adolescent ; Anemia, Aplastic ; diagnosis ; Case-Control Studies ; Child ; Child, Preschool ; Chromosomal Instability ; Chromosome Breakage ; drug effects ; Comet Assay ; methods ; DNA Damage ; Diagnosis, Differential ; Fanconi Anemia ; diagnosis ; genetics ; Female ; Humans ; Infant ; Male ; Mitomycin ; pharmacology ; Mosaicism ; Pancytopenia ; diagnosis ; genetics ; ROC Curve
9.Genotoxicity and reduced heat shock protein 70 in human airway smooth muscle cells exposed to cigarette smoke extract.
Xiao-jie WU ; Guo-xiong LUO ; Xue ZENG ; Li-Li LAN ; Qin NING ; Yong-jian XU ; Jian-ping ZHAO ; Jun-gang XIE
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(6):827-833
Cigarette smoke is associated with the development of several diseases, such as chronic obstructive pulmonary disease (COPD). The purpose of this study was to investigate genotoxicity and heat shock protein 70 (Hsp70) in human airway smooth muscle cells (HASMCs) exposed to cigarette smoke extract (CSE). HASMCs was exposed to CSE with different doses for 24 h. The level of 8-hydroxydeoxyguanosine (8-OHdG) was determined by using HPLC-ECD, the DNA damage was analyzed by using comet assay, and apoptosis was examined by using Annexin-FITC/PI staining. The production of Hsp70 after CSE stimulation was tested. Results indicated that CSE significantly increased the level of 8-OHdG, DNA damage and cell apoptosis, and reduced the production of Hsp70. In particular, levels of Hsp70 were inversely correlated with 8-OHdG, DNA damage and cell apoptosis. It was concluded that cigarette smoke induced genotoxicity and decreased the production of cell protective protein Hsp70, which may contribute to the development of some airway diseases.
Apoptosis
;
DNA Damage
;
Deoxyguanosine
;
analogs & derivatives
;
metabolism
;
HSP70 Heat-Shock Proteins
;
genetics
;
metabolism
;
Humans
;
Lung
;
cytology
;
drug effects
;
Myocytes, Smooth Muscle
;
drug effects
;
metabolism
;
Smoke
;
adverse effects
;
Tobacco
;
toxicity
;
Tumor Cells, Cultured
10.Inhibition of DNA-dependent protein kinase catalytic subunit by small molecule inhibitor NU7026 sensitizes human leukemic K562 cells to benzene metabolite-induced apoptosis.
Hao YOU ; Meng-meng KONG ; Li-ping WANG ; Xiao XIAO ; Han-lin LIAO ; Zhuo-yue BI ; Hong YAN ; Hong WANG ; Chun-hong WANG ; Qiang MA ; Yan-qun LIU ; Yong-yi BI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(1):43-50
Benzene is an established leukotoxin and leukemogen in humans. We have previously reported that exposure of workers to benzene and to benzene metabolite hydroquinone in cultured cells induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to mediate the cellular response to DNA double strand break (DSB) caused by DNA-damaging metabolites. In this study, we used a new, small molecule, a selective inhibitor of DNA-PKcs, 2-(morpholin-4-yl)-benzo[h]chomen-4-one (NU7026), as a probe to analyze the molecular events and pathways in hydroquinone-induced DNA DSB repair and apoptosis. Inhibition of DNA-PKcs by NU7026 markedly potentiated the apoptotic and growth inhibitory effects of hydroquinone in proerythroid leukemic K562 cells in a dose-dependent manner. Treatment with NU7026 did not alter the production of reactive oxygen species and oxidative stress by hydroquinone but repressed the protein level of DNA-PKcs and blocked the induction of the kinase mRNA and protein expression by hydroquinone. Moreover, hydroquinone increased the phosphorylation of Akt to activate Akt, whereas co-treatment with NU7026 prevented the activation of Akt by hydroquinone. Lastly, hydroquinone and NU7026 exhibited synergistic effects on promoting apoptosis by increasing the protein levels of pro-apoptotic proteins Bax and caspase-3 but decreasing the protein expression of anti-apoptotic protein Bcl-2. Taken together, the findings reveal a central role of DNA-PKcs in hydroquinone-induced hematotoxicity in which it coordinates DNA DSB repair, cell cycle progression, and apoptosis to regulate the response to hydroquinone-induced DNA damage.
Apoptosis
;
drug effects
;
physiology
;
Benzene
;
toxicity
;
Catalysis
;
Chromones
;
pharmacology
;
DNA Damage
;
drug effects
;
genetics
;
DNA Repair
;
drug effects
;
physiology
;
DNA-Activated Protein Kinase
;
antagonists & inhibitors
;
metabolism
;
Humans
;
K562 Cells
;
Morpholines
;
pharmacology
;
Protein Subunits

Result Analysis
Print
Save
E-mail