1.A Population-Based Genomic Study of Inherited Metabolic Diseases Detected Through Newborn Screening.
Kyoung Jin PARK ; Seungman PARK ; Eunhee LEE ; Jong Ho PARK ; June Hee PARK ; Hyung Doo PARK ; Soo Youn LEE ; Jong Won KIM
Annals of Laboratory Medicine 2016;36(6):561-572
BACKGROUND: A newborn screening (NBS) program has been utilized to detect asymptomatic newborns with inherited metabolic diseases (IMDs). There have been some bottlenecks such as false-positives and imprecision in the current NBS tests. To overcome these issues, we developed a multigene panel for IMD testing and investigated the utility of our integrated screening model in a routine NBS environment. We also evaluated the genetic epidemiologic characteristics of IMDs in a Korean population. METHODS: In total, 269 dried blood spots with positive results from current NBS tests were collected from 120,700 consecutive newborns. We screened 97 genes related to NBS in Korea and detected IMDs, using an integrated screening model based on biochemical tests and next-generation sequencing (NGS) called NewbornSeq. Haplotype analysis was conducted to detect founder effects. RESULTS: The overall positive rate of IMDs was 20%. We identified 10 additional newborns with preventable IMDs that would not have been detected prior to the implementation of our NGS-based platform NewbornSeq. The incidence of IMDs was approximately 1 in 2,235 births. Haplotype analysis demonstrated founder effects in p.Y138X in DUOXA2, p.R885Q in DUOX2, p.Y439C in PCCB, p.R285Pfs*2 in SLC25A13, and p.R224Q in GALT. CONCLUSIONS: Through a population-based study in the NBS environment, we highlight the screening and epidemiological implications of NGS. The integrated screening model will effectively contribute to public health by enabling faster and more accurate IMD detection through NBS. This study suggested founder mutations as an explanation for recurrent IMD-causing mutations in the Korean population.
Computational Biology
;
DNA/chemistry/isolation & purification/metabolism
;
Dried Blood Spot Testing
;
Galactokinase
;
Genomics
;
Haplotypes
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Incidence
;
Infant, Newborn
;
Membrane Proteins/genetics
;
Metabolic Diseases/*diagnosis/epidemiology/genetics
;
Metabolism, Inborn Errors/diagnosis/epidemiology/genetics
;
Mitochondrial Membrane Transport Proteins/genetics
;
Neonatal Screening
;
Polymorphism, Genetic
;
Republic of Korea/epidemiology
;
Sequence Analysis, DNA
2.Ancient Mitochondrial DNA Analyses of Ascaris Eggs Discovered in Coprolites from Joseon Tomb.
Chang Seok OH ; Min SEO ; Jong Ha HONG ; Jong Yil CHAI ; Seung Whan OH ; Jun Bum PARK ; Dong Hoon SHIN
The Korean Journal of Parasitology 2015;53(2):237-242
Analysis of ancient DNA (aDNA) extracted from Ascaris is very important for understanding the phylogenetic lineage of the parasite species. When aDNAs obtained from a Joseon tomb (SN2-19-1) coprolite in which Ascaris eggs were identified were amplified with primers for cytochrome b (cyt b) and 18S small subunit ribosomal RNA (18S rRNA) gene, the outcome exhibited Ascaris specific amplicon bands. By cloning, sequencing, and analysis of the amplified DNA, we obtained information valuable for comprehending genetic lineage of Ascaris prevalent among pre-modern Joseon peoples.
Adult
;
Animals
;
Ascariasis/diagnosis/history/*parasitology
;
Ascaris/classification/genetics/*isolation & purification
;
Base Sequence
;
Cytochromes b/genetics
;
DNA Primers/genetics
;
DNA, Helminth/*genetics
;
DNA, Mitochondrial/*genetics/history
;
Female
;
Fossils/history/parasitology
;
History, Ancient
;
Humans
;
Male
;
Molecular Sequence Data
;
Mummies/history/*parasitology
;
Ovum/chemistry/classification
;
Phylogeny
;
RNA, Ribosomal, 18S/genetics
3.Molecular characterization, biological forms and sporozoite rate of Anopheles stephensi in southern Iran.
Ali Reza CHAVSHIN ; ; Mohammad Ali OSHAGHI ; Hasan VATANDOOST ; Ahmad Ali HANAFI-BOJD ; Ahmad RAEISI ; Fatemeh NIKPOOR
Asian Pacific Journal of Tropical Biomedicine 2014;4(1):47-51
OBJECTIVETo identify the biological forms, sporozoite rate and molecular characterization of the Anopheles stephensi (An. stephensi) in Hormozgan and Sistan-Baluchistan provinces, the most important malarious areas in Iran.
METHODSWild live An. stephensi samples were collected from different malarious areas in southern Iran. The biological forms were identified based on number of egg-ridges. Molecular characterization of biological forms was verified by analysis of the mitochondrial cytochrome oxidase subunit I and II (mtDNA-COI/COII). The Plasmodium infection was examined in the wild female specimens by species-specific nested-PCR method.
RESULTSResults showed that all three biological forms including mysorensis, intermediate and type are present in the study areas. Molecular investigations revealed no genetic variation between mtDNA COI/COII sequences of the biological forms and no Plasmodium parasites was detected in the collected mosquito samples.
CONCLUSIONSPresence of three biological forms with identical sequences showed that the known biological forms belong to a single taxon and the various vectorial capacities reported for these forms are more likely corresponded to other epidemiological factors than to the morphotype of the populations. Lack of malaria parasite infection in An. stephensi, the most important vector of malaria, may be partly due to the success and achievement of ongoing active malaria control program in the region.
Animals ; Anopheles ; genetics ; parasitology ; DNA, Mitochondrial ; genetics ; DNA, Protozoan ; genetics ; Eggs ; classification ; parasitology ; Female ; Iran ; Male ; Parasite Load ; Plasmodium ; genetics ; isolation & purification ; Polymerase Chain Reaction ; Sporozoites
4.Whole Mitochondrial Genome Sequence of an Indian Plasmodium falciparum Field Isolate.
Suchi TYAGI ; Veena PANDE ; Aparup DAS
The Korean Journal of Parasitology 2014;52(1):99-103
Mitochondrial genome sequence of malaria parasites has served as a potential marker for inferring evolutionary history of the Plasmodium genus. In Plasmodium falciparum, the mitochondrial genome sequences from around the globe have provided important evolutionary understanding, but no Indian sequence has yet been utilized. We have sequenced the whole mitochondrial genome of a single P. falciparum field isolate from India using novel primers and compared with the 3D7 reference sequence and 1 previously reported Indian sequence. While the 2 Indian sequences were highly divergent from each other, the presently sequenced isolate was highly similar to the reference 3D7 strain.
DNA, Mitochondrial/*chemistry/*genetics
;
Genetic Variation
;
*Genome, Mitochondrial
;
Humans
;
India
;
Malaria, Falciparum/parasitology
;
Molecular Sequence Data
;
Plasmodium falciparum/*genetics/isolation & purification
;
Sequence Analysis, DNA
;
Sequence Homology, Nucleic Acid
5.Genetic Characterization of Clinical Acanthamoeba Isolates from Japan using Nuclear and Mitochondrial Small Subunit Ribosomal RNA.
Md Moshiur RAHMAN ; Kenji YAGITA ; Akira KOBAYASHI ; Yosaburo OIKAWA ; Amjad I A HUSSEIN ; Takahiro MATSUMURA ; Masaharu TOKORO
The Korean Journal of Parasitology 2013;51(4):401-411
Because of an increased number of Acanthamoeba keratitis (AK) along with associated disease burdens, medical professionals have become more aware of this pathogen in recent years. In this study, by analyzing both the nuclear 18S small subunit ribosomal RNA (18S rRNA) and mitochondrial 16S rRNA gene loci, 27 clinical Acanthamoeba strains that caused AK in Japan were classified into 3 genotypes, T3 (3 strains), T4 (23 strains), and T5 (one strain). Most haplotypes were identical to the reference haplotypes reported from all over the world, and thus no specificity of the haplotype distribution in Japan was found. The T4 sub-genotype analysis using the 16S rRNA gene locus also revealed a clear sub-conformation within the T4 cluster, and lead to the recognition of a new sub-genotype T4i, in addition to the previously reported sub-genotypes T4a-T4h. Furthermore, 9 out of 23 strains in the T4 genotype were identified to a specific haplotype (AF479533), which seems to be a causal haplotype of AK. While heterozygous nuclear haplotypes were observed from 2 strains, the mitochondrial haplotypes were homozygous as T4 genotype in the both strains, and suggested a possibility of nuclear hybridization (mating reproduction) between different strains in Acanthamoeba. The nuclear 18S rRNA gene and mitochondrial 16S rRNA gene loci of Acanthamoeba spp. possess different unique characteristics usable for the genotyping analyses, and those specific features could contribute to the establishment of molecular taxonomy for the species complex of Acanthamoeba.
Acanthamoeba/classification/genetics/growth & development/*isolation & purification
;
Acanthamoeba Keratitis/*parasitology
;
Cell Nucleus/*genetics
;
DNA, Mitochondrial/*genetics
;
DNA, Protozoan/genetics
;
Humans
;
Japan
;
Molecular Sequence Data
;
Phylogeny
;
RNA, Ribosomal, 16S/*genetics
;
RNA, Ribosomal, 18S/*genetics
6.Molecular Characterization of Taenia multiceps Isolates from Gansu Province, China by Sequencing of Mitochondrial Cytochrome C Oxidase Subunit 1.
Wen Hui LI ; Wan Zhong JIA ; Zi Gang QU ; Zhi Zhou XIE ; Jian Xun LUO ; Hong YIN ; Xiao Lin SUN ; Radu BLAGA ; Bao Quan FU
The Korean Journal of Parasitology 2013;51(2):197-201
A total of 16 Taenia multiceps isolates collected from naturally infected sheep or goats in Gansu Province, China were characterized by sequences of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The complete cox1 gene was amplified for individual T. multiceps isolates by PCR, ligated to pMD18T vector, and sequenced. Sequence analysis indicated that out of 16 T. multiceps isolates 10 unique cox1 gene sequences of 1,623 bp were obtained with sequence variation of 0.12-0.68%. The results showed that the cox1 gene sequences were highly conserved among the examined T. multiceps isolates. However, they were quite different from those of the other Taenia species. Phylogenetic analysis based on complete cox1 gene sequences revealed that T. multiceps isolates were composed of 3 genotypes and distinguished from the other Taenia species.
Animals
;
China
;
Cluster Analysis
;
Cysticercosis/parasitology/veterinary
;
DNA, Helminth/chemistry/genetics/isolation & purification
;
DNA, Mitochondrial/chemistry/genetics/isolation & purification
;
Electron Transport Complex IV/*genetics
;
*Genetic Variation
;
Goat Diseases/parasitology
;
Goats
;
Phylogeny
;
Polymerase Chain Reaction
;
Protein Subunits/genetics
;
Sequence Analysis, DNA
;
Sheep
;
Sheep Diseases/parasitology
;
Taenia/*classification/genetics/*isolation & purification
7.Molecular Approaches to Taenia asiatica.
Hyeong Kyu JEON ; Keeseon S EOM
The Korean Journal of Parasitology 2013;51(1):1-8
Taenia solium, T. saginata, and T. asiatica are taeniid tapeworms that cause taeniasis in humans and cysticercosis in intermediate host animals. Taeniases remain an important public health concerns in the world. Molecular diagnostic methods using PCR assays have been developed for rapid and accurate detection of human infecting taeniid tapeworms, including the use of sequence-specific DNA probes, PCR-RFLP, and multiplex PCR. More recently, DNA diagnosis using PCR based on histopathological specimens such as 10% formalin-fixed paraffin-embedded and stained sections mounted on slides has been applied to cestode infections. The mitochondrial gene sequence is believed to be a very useful molecular marker for not only studying evolutionary relationships among distantly related taxa, but also for investigating the phylo-biogeography of closely related species. The complete sequence of the human Taenia tapeworms mitochondrial genomes were determined, and its organization and structure were compared to other human-tropic Taenia tapeworms for which complete mitochondrial sequence data were available. The multiplex PCR assay with the Ta4978F, Ts5058F, Tso7421F, and Rev7915 primers will be useful for differential diagnosis, molecular characterization, and epidemiological surveys of human Taenia tapeworms.
Animals
;
DNA, Helminth/genetics
;
DNA, Mitochondrial/genetics
;
Humans
;
Molecular Diagnostic Techniques/*methods
;
Parasitology/*methods
;
Taenia/classification/*genetics/*isolation & purification
;
Taeniasis/*diagnosis/*veterinary
8.Complete Mitochondrial Genome of Haplorchis taichui and Comparative Analysis with Other Trematodes.
Dongmin LEE ; Seongjun CHOE ; Hansol PARK ; Hyeong Kyu JEON ; Jong Yil CHAI ; Woon Mok SOHN ; Tai Soon YONG ; Duk Young MIN ; Han Jong RIM ; Keeseon S. EOM
The Korean Journal of Parasitology 2013;51(6):719-726
Mitochondrial genomes have been extensively studied for phylogenetic purposes and to investigate intra- and interspecific genetic variations. In recent years, numerous groups have undertaken sequencing of platyhelminth mitochondrial genomes. Haplorchis taichui (family Heterophyidae) is a trematode that infects humans and animals mainly in Asia, including the Mekong River basin. We sequenced and determined the organization of the complete mitochondrial genome of H. taichui. The mitochondrial genome is 15,130 bp long, containing 12 protein-coding genes, 2 ribosomal RNAs (rRNAs, a small and a large subunit), and 22 transfer RNAs (tRNAs). Like other trematodes, it does not encode the atp8 gene. All genes are transcribed from the same strand. The ATG initiation codon is used for 9 protein-coding genes, and GTG for the remaining 3 (nad1, nad4, and nad5). The mitochondrial genome of H. taichui has a single long non-coding region between trnE and trnG. H. taichui has evolved as being more closely related to Opisthorchiidae than other trematode groups with maximal support in the phylogenetic analysis. Our results could provide a resource for the comparative mitochondrial genome analysis of trematodes, and may yield genetic markers for molecular epidemiological investigations into intestinal flukes.
Animals
;
Asia
;
Codon, Initiator
;
DNA, Mitochondrial/chemistry/genetics
;
Gene Order
;
Genes, Helminth
;
*Genome, Mitochondrial
;
Heterophyidae/*genetics/isolation & purification
;
Humans
;
Molecular Sequence Data
;
Sequence Analysis, DNA
9.Nail DNA and Possible Biomarkers: A Pilot Study.
Joshua PARK ; Debbie LIANG ; Jung Woo KIM ; Yongjun LUO ; Taesheng HUANG ; Soo Young KIM ; Seong Sil CHANG
Journal of Preventive Medicine and Public Health 2012;45(4):235-243
OBJECTIVES: Nail has been a substitute DNA source for genotyping. To investigate the integrity and consistency of nail DNA amplification for biomarker study, nail clippings from 12 subjects were collected at monthly intervals. The possibility of longer amplification and existence of GAPDH RNA/protein, were also investigated with three nail samples. METHODS: Three primer sets were designed for quantitative amplification of nuclear and mitochondrial genes and analysis of their consistency. The mean threshold cycles in amplification of the target genes were compared to test the consistency of polymerase chain reaction (PCR) performance among individual factors including age groups, sex, family, the nail source, and by the size of the amplification segments. RESULTS: The amplification of the target genes from nail DNA showed similar integrity and consistency between the nail sources, and among the serial collections. However, nail DNA from those in their forties showed earlier threshold cycles in amplification than those in their teens or seventies. Mitochondrial DNA (mtDNA) showed better DNA integrity and consistency in amplification of all three targets than did nuclear DNA (nucDNA). Over 9 kb of mtDNA was successfully amplified, and nested quantitative PCR showed reliable copy numbers (%) between the two loci. Reverse transcription PCR for mRNA and immunoblotting for GAPDH protein successfully reflected their corresponding amounts. Regarding the existence of RNA and protein in nails, more effective extraction and detection methods need to be set up to validate the feasibility in biomarker study. CONCLUSIONS: Nail DNA might be a feasible intra-individual monitoring biomarker. Considering integrity and consistency in target amplification, mtDNA would be a better target for biomarker research than nucDNA.
Adult
;
Age Factors
;
Aged
;
Biological Markers/analysis
;
Child
;
DNA/*analysis/isolation & purification
;
DNA Primers
;
DNA, Mitochondrial/analysis
;
Feasibility Studies
;
Female
;
Gene Amplification
;
Humans
;
Male
;
Middle Aged
;
Nails/*chemistry
;
Pilot Projects
10.Morphologic and Genetic Identification of Taenia Tapeworms in Tanzania and DNA Genotyping of Taenia solium.
Keeseon S EOM ; Jong Yil CHAI ; Tai Soon YONG ; Duk Young MIN ; Han Jong RIM ; Charles KIHAMIA ; Hyeong Kyu JEON
The Korean Journal of Parasitology 2011;49(4):399-403
Species identification of Taenia tapeworms was performed using morphologic observations and multiplex PCR and DNA sequencing of the mitochondrial cox1 gene. In 2008 and 2009, a total of 1,057 fecal samples were collected from residents of Kongwa district of Dodoma region, Tanzania, and examined microscopically for helminth eggs and proglottids. Of these, 4 Taenia egg positive cases were identified, and the eggs were subjected to DNA analysis. Several proglottids of Taenia solium were recovered from 1 of the 4 cases. This established that the species were T. solium (n=1) and T. saginata (n=3). One further T. solium specimen was found among 128 fecal samples collected from Mbulu district in Arusha, and this had an intact strobila with the scolex. Phylegenetic analysis of the mtDNA cox1 gene sequences of these 5 isolates showed that T. saginata was basal to the T. solium clade. The mitochondrial cox1 gene sequences of 3 of these Tanzanian isolates showed 99% similarity to T. saginata, and the other 2 isolates showed 100% similarity to T. solium. The present study has shown that Taenia tapeworms are endemic in Kongwa district of Tanzania, as well as in a previously identified Mbulu district. Both T. solium isolates were found to have an "African/Latin American" genotype (cox1).
Adolescent
;
Adult
;
Animals
;
DNA, Helminth/chemistry/genetics
;
DNA, Mitochondrial/chemistry/genetics
;
Diagnosis, Differential
;
Feces/parasitology
;
Genotype
;
Humans
;
Male
;
Multiplex Polymerase Chain Reaction
;
Phylogeny
;
Sequence Analysis, DNA
;
Species Specificity
;
Taenia saginata/classification/genetics/*isolation & purification
;
Taenia solium/classification/genetics/*isolation & purification
;
Taeniasis/*parasitology
;
Tanzania

Result Analysis
Print
Save
E-mail