1.Benchmark Dose Assessment for Coke Oven Emissions-Induced Mitochondrial DNA Copy Number Damage Effects.
Zhao Fan YAN ; Zhi Guang GU ; Ya Hui FAN ; Xin Ling LI ; Ze Ming NIU ; Xiao Ran DUAN ; Ali Manthar MALLAH ; Qiao ZHANG ; Yong Li YANG ; Wu YAO ; Wei WANG
Biomedical and Environmental Sciences 2023;36(6):490-500
OBJECTIVE:
The study aimed to estimate the benchmark dose (BMD) of coke oven emissions (COEs) exposure based on mitochondrial damage with the mitochondrial DNA copy number (mtDNAcn) as a biomarker.
METHODS:
A total of 782 subjects were recruited, including 238 controls and 544 exposed workers. The mtDNAcn of peripheral leukocytes was detected through the real-time fluorescence-based quantitative polymerase chain reaction. Three BMD approaches were used to calculate the BMD of COEs exposure based on the mitochondrial damage and its 95% confidence lower limit (BMDL).
RESULTS:
The mtDNAcn of the exposure group was lower than that of the control group (0.60 ± 0.29 vs. 1.03 ± 0.31; P < 0.001). A dose-response relationship was shown between the mtDNAcn damage and COEs. Using the Benchmark Dose Software, the occupational exposure limits (OELs) for COEs exposure in males was 0.00190 mg/m 3. The OELs for COEs exposure using the BBMD were 0.00170 mg/m 3 for the total population, 0.00158 mg/m 3 for males, and 0.00174 mg/m 3 for females. In possible risk obtained from animal studies (PROAST), the OELs of the total population, males, and females were 0.00184, 0.00178, and 0.00192 mg/m 3, respectively.
CONCLUSION
Based on our conservative estimate, the BMDL of mitochondrial damage caused by COEs is 0.002 mg/m 3. This value will provide a benchmark for determining possible OELs.
Male
;
Female
;
Animals
;
Coke
;
Polycyclic Aromatic Hydrocarbons
;
DNA Copy Number Variations
;
Benchmarking
;
Occupational Exposure/analysis*
;
DNA, Mitochondrial/genetics*
;
DNA Damage
2.Mitochondrial genome sequence characteristics and phylogenetic analysis of Schizothorax argentatus.
Yuping LIU ; Jianyong HU ; Zijun NING ; Peiyi XIAO ; Tianyan YANG
Chinese Journal of Biotechnology 2023;39(7):2965-2985
Schizothorax argentatus that only distributes in the Ili River basin in Xinjiang is one of the rare and endangered species of schizothorax in China, thus has high scientific and economic values. In this study, the complete mitochondrial genome sequence of S. argenteus with a length of 16 580 bp was obtained by high-throughput sequencing. The gene compositions and arrangement were similar to those of typical vertebrates. It contained 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and a non-coding region (D-loop). The nucleotide compositions were A (30.25%), G (17.28%), C (27.20%), and T (25.27%), respectively, showing obvious AT bias and anti-G bias. Among the tRNA genes, only tRNA-Ser(GCU) could not form a typical cloverleaf structure due to the lack of dihydrouracil arm. The AT-skew and GC-skew values of the ND6 gene were fluctuating the most, suggesting that the gene may experience different selection and mutation pressures from other genes. The mitochondrial control region of S. argenteus contained three different domains, i.e., termination sequence region (ETAS), central conserved region (CSB-F, CSB-E, CSB-D, and CSB-B), and conserved sequence region (CSB1, CSB2, and CSB3). The conserved sequence fragment TT (AT) nGTG, which was ubiquitous in Cypriniformes, was identified at about 50 bp downstream CSB3. Phylogenetic relationships based on the complete mitochondrial genome sequence of 28 Schizothorax species showed that S. argenteus had differentiated earlier and had a distant relationship with other species, which may be closely related to the geographical location and the hydrological environment where it lives.
Animals
;
Genome, Mitochondrial/genetics*
;
Phylogeny
;
Sequence Analysis, DNA
;
Cyprinidae/genetics*
;
RNA, Transfer/genetics*
;
DNA, Mitochondrial/genetics*
;
Genes, Mitochondrial
3.A non-invasive method for detecting mitochondrial tRNA
Zhining TANG ; Xiaowen TANG ; Ling XUE ; Minxin GUAN
Journal of Southern Medical University 2021;41(1):151-156
OBJECTIVE:
To explore the feasibility of detecting maternal hereditary mitochondrial tRNA
METHODS:
We performed sequence analysis of mitochondrial DNA in blood samples from 2070 cases of maternal hereditary mitochondrial disease in the First Affiliated Hospital of Wenzhou Medical University, and identified 3 patients with m.15927G>A mutation.Buccal swabs and blood samples were obtained from the 3 patients (mutation group) and 3 normal volunteers (control group).After extracting whole genomic DNA from all the samples, the DNA concentration and purity were analyzed.The PCR products were subjected to dot blot hybridization, Southern blot hybridization, and DNA sequencing analysis to verify the feasibility of detecting m.15927G>A mutation using buccal swabs.
RESULTS:
There was no significant difference in DNA concentration extracted from buccal swabs and blood samples in either the mutation group or the control group (
CONCLUSIONS
Buccal swabs collection accurate is an accurate and sensitive method for the detection of m.15927G>A mutation.
DNA, Mitochondrial/genetics*
;
Humans
;
Mitochondria
;
Mutation
;
RNA, Transfer
;
Sequence Analysis, DNA
4.Mitochondrial DNA Heteroplasmy of Hair Shaft Using HID Ion GeneStudioTM S5 Sequencing System.
Feng CHENG ; Qing Xia ZHANG ; Cheng Jian CHEN ; Wan Ting LI ; Jia Rong ZHANG ; Geng Qian ZHANG ; Jiang Wei YAN
Journal of Forensic Medicine 2021;37(1):21-25
Objective To study the heteroplasmy of the whole mitochondrial genome genotyping result of hair shaft samples using HID Ion GeneStudioTM S5 Sequencing System. Methods The buccal swabs and blood of 8 unrelated individuals, and hair shaft samples from different parts of the same individual were collected. Amplification of whole mitochondrial genome was performed using Precision ID mtDNA Whole Genome Panel. Analysis and detection of whole mitochondrial genome were carried out using the HID Ion GeneStudioTM S5 Sequencing System. Results The mitochondrial DNA sequences in temporal hair shaft samples from 2 individuals showed heteroplasmy, while whole mitochondrial genome genotyping results of buccal swabs, blood, and hair samples from the other 6 unrelated individuals were consistent. A total of 119 base variations were observed from the 8 unrelated individuals. The numbers of variable sites of the individuals were 29, 40, 38, 35, 13, 36, 40 and 35, respectively. Conclusion Sequence polymorphism can be fully understood using HID Ion GeneStudioTM S5 Sequencing system.
DNA, Mitochondrial/genetics*
;
Genome, Mitochondrial/genetics*
;
Heteroplasmy
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Sequence Analysis, DNA
5.Mutational analysis of 117 patients with non-syndromic hearing loss.
Leilei WANG ; Ying GU ; Shuting YANG ; Huafen MAO ; Xinxin TANG ; Tianlong XU ; Min WU ; Yuhua SUN ; Xiucui LUO
Chinese Journal of Medical Genetics 2019;36(2):108-111
OBJECTIVE:
To determine the frequencies of deafness gene mutations among patients with non-syndromic hearing loss (NSHL) from northern Jiangsu province.
METHODS:
A total of 117 patients with NSHL were enrolled. The coding region of GJB2 gene, IVS7-2A>G and 2168A>G mutations of SLC26A4 gene, and 1555A>G and 1494C>T mutations of mitochondrial DNA 12S rRNA were subjected to Sanger sequencing. Patients in whom no mutation was detected were further tested by targeted gene capture and high-throughput sequencing.
RESULTS:
Among the 117 patients, 86 (73.50%) were found to carry mutations. GJB2 gene mutations were found in 61 patients (52.14%), including 22 (18.80%) with homozygous mutations and 39 (33.33%) with heterozygous mutations. SLC26A4 gene mutations were found in 19 patients (16.24%), including 4 (3.42%) with homozygous mutations and 15 with heterozygous mutations (14.53%). Mitochondrial 12S rRNA gene mutation was found in 6 patients (5.13%). Targeted gene capture and high-throughput sequencing of 8 patients identified 4 further cases, including 1 with RDX gene 129_130del and 76_79del compound heterozygous mutations, 1 with OTOF gene 1274G>C homozygous mutation, 1 with SLC26A4 gene 919-2A>G and IVS16-6G>A compound heterozygous mutation, and 1 with SLC26A4 gene 919-2A>G and A1673T compound heterozygous mutation.
CONCLUSION
The frequency of mutation among patients with NSHL from north Jiangsu was 73.50%, and GJB2 gene was most commonly mutated.
China
;
Connexins
;
DNA Mutational Analysis
;
DNA, Mitochondrial
;
Hearing Loss
;
genetics
;
Humans
;
Membrane Proteins
;
Mutation
;
Sulfate Transporters
6.Analysis of 28S rRNA and COⅠ Gene Sequence of Nine Necrophagous Calliphorid Flies from Luoyang.
Lin Lin ZHAO ; Xian Dun ZHAI ; Zhe ZHENG ; Zhou LÜ ; Yong Lin LI ; Yao Nan MO
Journal of Forensic Medicine 2019;35(2):181-186
Objective To assess the feasibility of using 28S ribosomal RNA (28S rRNA) and mitochondrial cytochrome c oxidase subunit Ⅰ (COⅠ) gene sequences of nine necrophagous Calliphorid flies for the identification of common necrophagous Calliphorid flies, and to provide technical support for postmortem interval (PMI) estimation. Methods Twenty-three Calliphorid flies were collected and identified morphologically, and DNA were extracted from legs. The gene fragments of 28S rRNA and COⅠ were amplified and sequenced, then the sequence alignment was performed with BLAST. The composition of obtained sequences was analyzed and evolutionary divergence rate between species and intraspecies were established. The phylogeny tree was constructed with neighbor-joining method. Results The 23 necrophagous Calliphorid flies were identified to 9 species of 5 genera. The 715 bp from 28S rRNA and 637 bp from COⅠ gene were obtained and the online BLAST result showed more than 99% of similarity. The phylogeny tree showed that the necrophagous flies could cluster well into 9 groups, which was consistent with morphological identification results. The intraspecific difference in 28S rRNA was 0 and the interspecific difference was 0.001-0.033. The intraspecific difference in COⅠ was 0-0.008 and the interspecific difference was 0.006-0.101. Conclusion Combined use of 28S rRNA and COⅠ gene sequence fragments can effectively identify the nine Calliphorid flies in this study. However, for closely related blowfly species, more genetic markers should be explored and used in combination in future.
Animals
;
DNA, Mitochondrial/genetics*
;
Diptera/genetics*
;
Phylogeny
;
RNA, Ribosomal, 28S/genetics*
;
Sequence Analysis, DNA
;
Species Specificity
7.Mutational analysis of ASS1, ASL and SLC25A13 genes in six Chinese patients with citrullinemia.
Yiming LIN ; Ke YU ; Lufeng LI ; Zhenzhu ZHENG ; Weihua LIN ; Qingliu FU
Chinese Journal of Medical Genetics 2017;34(5):676-679
OBJECTIVETo detect potential mutations in six patients with citrullinemia.
METHODSGenomic DNA was extracted from peripheral blood samples from the patients. Mutations of the ASS1, ASL and SLC25A13 genes were screened using microarray genotyping combined with direct sequencing.
RESULTSOne patient was diagnosed with argininosuccinate lyase deficiency, and has carried a homozygous c.1311T>G (p.Y437*) mutation of the ASL gene. The remaining five patients were diagnosed with neonatal intrahepatic cholestasis due to citrin deficiency, and have respectively carried mutations of the SLC25A13 gene including [c.851-854delGTAT+c.851-854delGTAT], [c.851-854delGTAT+IVS6+5G>A], [c.851-854delGTAT+IVS16ins3kb], [c.851-854delGTAT+IVS6-11A>G] and [c.851-854delGTAT+c.1638-1660dup23]. Among these, the c.1311T>G mutation was first identified in the Chinese population, and the IVS6-11A>G mutation was a novel variation which may affect the splicing, as predicted by Human Splicing Finder software.
CONCLUSIONThis study has confirmed the molecular diagnosis of citrullinemia in six patients and expanded the mutational spectrum underlying citrullinemia.
Argininosuccinate Lyase ; genetics ; Argininosuccinate Synthase ; genetics ; Citrullinemia ; genetics ; DNA Mutational Analysis ; Female ; Humans ; Infant ; Infant, Newborn ; Male ; Mitochondrial Membrane Transport Proteins ; genetics ; Mutation
8.A Population-Based Genomic Study of Inherited Metabolic Diseases Detected Through Newborn Screening.
Kyoung Jin PARK ; Seungman PARK ; Eunhee LEE ; Jong Ho PARK ; June Hee PARK ; Hyung Doo PARK ; Soo Youn LEE ; Jong Won KIM
Annals of Laboratory Medicine 2016;36(6):561-572
BACKGROUND: A newborn screening (NBS) program has been utilized to detect asymptomatic newborns with inherited metabolic diseases (IMDs). There have been some bottlenecks such as false-positives and imprecision in the current NBS tests. To overcome these issues, we developed a multigene panel for IMD testing and investigated the utility of our integrated screening model in a routine NBS environment. We also evaluated the genetic epidemiologic characteristics of IMDs in a Korean population. METHODS: In total, 269 dried blood spots with positive results from current NBS tests were collected from 120,700 consecutive newborns. We screened 97 genes related to NBS in Korea and detected IMDs, using an integrated screening model based on biochemical tests and next-generation sequencing (NGS) called NewbornSeq. Haplotype analysis was conducted to detect founder effects. RESULTS: The overall positive rate of IMDs was 20%. We identified 10 additional newborns with preventable IMDs that would not have been detected prior to the implementation of our NGS-based platform NewbornSeq. The incidence of IMDs was approximately 1 in 2,235 births. Haplotype analysis demonstrated founder effects in p.Y138X in DUOXA2, p.R885Q in DUOX2, p.Y439C in PCCB, p.R285Pfs*2 in SLC25A13, and p.R224Q in GALT. CONCLUSIONS: Through a population-based study in the NBS environment, we highlight the screening and epidemiological implications of NGS. The integrated screening model will effectively contribute to public health by enabling faster and more accurate IMD detection through NBS. This study suggested founder mutations as an explanation for recurrent IMD-causing mutations in the Korean population.
Computational Biology
;
DNA/chemistry/isolation & purification/metabolism
;
Dried Blood Spot Testing
;
Galactokinase
;
Genomics
;
Haplotypes
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Incidence
;
Infant, Newborn
;
Membrane Proteins/genetics
;
Metabolic Diseases/*diagnosis/epidemiology/genetics
;
Metabolism, Inborn Errors/diagnosis/epidemiology/genetics
;
Mitochondrial Membrane Transport Proteins/genetics
;
Neonatal Screening
;
Polymorphism, Genetic
;
Republic of Korea/epidemiology
;
Sequence Analysis, DNA
9.Analysis of clinical features and SLC25A13 gene mutations in a family affected with neonatal intrahepatic cholestasis.
Ling WANG ; Xinran CHENG ; Li YAN ; Yan WEI ; Fang TANG ; Xin DONG ; Yanjiao YUAN ; Yanmei XIE
Chinese Journal of Medical Genetics 2016;33(5):670-673
OBJECTIVETo analyze the clinical features and potential mutations of the SLC25A13 gene in a boy affected with neonatal intrahepatic cholestasis.
METHODSClinical data and peripheral venous blood sample of the child, and peripheral venous blood samples of both parents, were collected. All coding exons of the SLC25A13 gene were amplified with PCR and subjected to direct DNA sequencing.
RESULTSThe boy was found to be a compound heterozygote carrying c.851_854delGTAT and IVS16ins3kb mutations of the SLC25A13 gene, which were respectively inherited from his mother and father.
CONCLUSIONBased on its clinical and genetic features, the patient was diagnosed with neonatal intrahepatic cholestasis caused by citrin deficiency.
Base Sequence ; Cholestasis, Intrahepatic ; etiology ; genetics ; Citrullinemia ; complications ; DNA Mutational Analysis ; Family Health ; Female ; Heterozygote ; Humans ; Infant ; Infant, Newborn ; Male ; Mitochondrial Membrane Transport Proteins ; genetics ; Mutagenesis, Insertional ; Mutation ; Sequence Deletion
10.Clinicopathological Implications of Mitochondrial Genome Alterations in Pediatric Acute Myeloid Leukemia.
Min Gu KANG ; Yu Na KIM ; Jun Hyung LEE ; Michael SZARDENINGS ; Hee Jo BAEK ; Hoon KOOK ; Hye Ran KIM ; Myung Geun SHIN
Annals of Laboratory Medicine 2016;36(2):101-110
BACKGROUND: To the best of our knowledge, the association between pediatric AML and mitochondrial aberrations has not been studied. We investigated various mitochondrial aberrations in pediatric AML and evaluated their impact on clinical outcomes. METHODS: Sequencing, mitochondrial DNA (mtDNA) copy number determination, mtDNA 4,977-bp large deletion assessments, and gene scan analyses were performed on the bone marrow mononuclear cells of 55 pediatric AML patients and on the peripheral blood mononuclear cells of 55 normal controls. Changes in the mitochondrial mass, mitochondrial membrane potential, and intracellular reactive oxygen species (ROS) levels were also examined. RESULTS: mtDNA copy numbers were about two-fold higher in pediatric AML cells than in controls (P<0.0001). Furthermore, a close relationship was found between mtDNA copy number tertiles and the risk of pediatric AML. Intracellular ROS levels, mitochondrial mass, and mitochondrial membrane potentials were all elevated in pediatric AML. The frequency of the mtDNA 4,977-bp large deletion was significantly higher (P< 0.01) in pediatric AML cells, and pediatric AML patients harboring high amount of mtDNA 4,977-bp deletions showed shorter overall survival and event-free survival rates, albeit without statistical significance. CONCLUSIONS: The present findings demonstrate an association between mitochondrial genome alterations and the risk of pediatric AML.
Bone Marrow Cells/metabolism
;
Case-Control Studies
;
Child
;
Cohort Studies
;
DNA, Mitochondrial/chemistry/genetics/metabolism
;
Female
;
Flow Cytometry
;
Gene Deletion
;
Gene Dosage
;
*Genome, Mitochondrial
;
Humans
;
Leukemia, Myeloid, Acute/genetics/mortality/*pathology
;
Male
;
Membrane Potential, Mitochondrial
;
Minisatellite Repeats/genetics
;
Odds Ratio
;
Reactive Oxygen Species/metabolism
;
Sequence Analysis, DNA
;
Survival Rate

Result Analysis
Print
Save
E-mail