1.Return-to-work among COVID-19 survivors in the Philippines and the role of rehabilitation: A mixed-method design.
Michael P. SY ; Roi Charles S. PINEDA ; Daryl Patrick G. YAO ; Hans D. TOGONON ; Eric ASABA
Acta Medica Philippina 2025;59(Early Access 2025):1-12
BACKGROUND
A substantial number of COVID-19 recoverees are working-aged individuals, which makes return-towork (RTW) an essential part of rehabilitation. Many COVID-19 recoverees must deal with physical and mental symptoms of post-COVID conditions such as fatigue, dyspnea, difficulty concentrating, memory lapses, and anxiety. These symptoms coupled with often insufficient support from employers and the government can make the RTW process complicated. Although research related to RTW after COVID-19 has begun to emerge over the years, few primary studies have come out from developing countries.
OBJECTIVESThis exploratory study aims to describe perceived work ability and health-related quality of life, lived experiences of the RTW process, and role of rehabilitation in a limited sample of Filipino COVID-19 recoverees.
METHODSUsing purposive sampling and a convergent parallel mixed-method design, the study draws on an online survey and group interviews to understand expectations, experiences, and self-rated work ability of working-age adults with post-COVID condition. We report the findings of the questionnaire data using descriptive statistics. From the questionnaire respondents, eight participants were interviewed to explore the RTW experiences from multiple perspectives. The group interview was conducted online, and narrative analysis was used to explore the data. This analytic process involved an iterative and inductive process between data gathering and data analysis.
RESULTSFindings from our narrative analysis are reported under four themes: 1) The period of liminality; 2) A ‘positive’ problem; 3) Health as a psychosocial and justice issue; and 4) The reimagination of paid work. The narratives gathered document an overview of how selected Filipinos overcame the COVID-19 infection and their recovery and RTW process.
CONCLUSIONResults call for a re-examination of the concept of health and paid work for individuals undergoing rehabilitation and recovery.
Human ; Pandemics ; Rehabilitation, Vocational ; Occupational Therapy
2.Interpretation and Elaboration for the ARRIVE Guidelines 2.0—Animal Research: Reporting In Vivo Experiments (V)
Zhengwen MA ; Xiaying LI ; Xiaoyu LIU ; Yao LI ; Jian WANG ; Jin LU ; Guoyuan CHEN ; Xiao LU ; Yu BAI ; Xuancheng LU ; Yonggang LIU ; Yufeng TAO ; Wanyong PANG
Laboratory Animal and Comparative Medicine 2024;44(1):105-114
Improving the reproducibility of biomedical research results is a major challenge. Transparent and accurate reporting of the research process enables readers to evaluate the reliability of the research results and further explore the experiment by repeating it or building upon its findings. The ARRIVE 2.0 guidelines, released in 2019 by the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), provide a checklist that is applicable to any in vivo animal research report. These guidelines aim to improve the standardization of experimental design, implementation, and reporting, as well as enhance the reliability, repeatability, and clinical translation of animal experimental results. The use of the ARRIVE 2.0 guidelines not only enriches the details of animal experimental research reports, ensuring that information on animal experimental results is fully evaluated and utilized, but also enables readers to understand the content expressed by the author accurately and clearly, promoting the transparency and completeness of the fundamental research review process. At present, the ARRIVE 2.0 guidelines have been widely adopted by international biomedical journals. This article is based on the best practices following the ARRIVE 2.0 guidelines in international journals, and it interprets, explains, and elaborates in Chinese the fifth part of the comprehensive version of the ARRIVE 2.0 guidelines published in PLoS Biology in 2020 (the original text can be found at
3.Identification of Zg02 metabolites in rats by UPLC-Q-TOF/MSE
Man ZHANG ; Rui CHEN ; Ke-rong HU ; Yao CHENG ; Jing HUANG
Acta Pharmaceutica Sinica 2024;59(8):2305-2312
In this study, plasma, urine and fecal samples were collected from rats after intragastric administration of novel insulin sensitizer Zg02 (20 mg·kg-1). The ultra-performance liquid chromatography-quadrupole-time-of-flight-tandem mass spectrometry (UPLC-Q-TOF/MSE) techniques was used to obtain the molecular ion and mass spectrometry fragment ion information of the compound, and the metabolites were quickly analyzed by combining with UNIFI metabolite software. The results showed that a total of 12 metabolites were inferred in rats after a single gavage of Zg02 (20 mg·kg-1), including 5, 7 and 11 metabolites in plasma, urine and feces (including cross-analysis), and the metabolic pathways were mainly glucuronidation and glucosylation. All animal protocols were approved by the Animal Ethics Committee of Guizhou Medical University (No. 2100856).
4.Identification of cajanonic acid A metabolites in rats by UPLC-Q-TOF-MS/MS
Yao CHENG ; Yu-juan BAN ; Rui CHEN ; Li ZHANG ; Ke-rong HU ; Jing HUANG
Acta Pharmaceutica Sinica 2024;59(5):1382-1390
This research established a simple, rapid and sensitive ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) method to investigate the metabolic profiles of cajanonic acid A (CAA) in rats. After intragastric administration of CAA (30 mg·kg-1) to rats, the biological samples were detected by UPLC-Q-TOF-MS/MS. Relevant data was collected and processed, the accurate mass and MS2 spectra of the metabolites were compared with the parent compound. As a result, a total of 23 metabolites were detected, including 15 in urine, 11 in bile, 11 in feces, and 9 in plasma. The major metabolic pathways related to CAA included dehydrogenation, reduction, hydroxylation, methylation and glucuronide conjugation. This experiment was approved by Animal Ethics Committee of Guizhou Medical University (approval number: 1603137).
5.Explanation and Elaboration for the ARRIVE Guidelines 2.0—Reporting Animal Research and In Vivo Experiments (Ⅳ)
Xiaying LI ; Yonglu TIAN ; Xiaoyu LIU ; Xuancheng LU ; Guoyuan CHEN ; Xiao LU ; Yu BAI ; Jing GAO ; Yao LI ; Yufeng TAO ; Wanyong PANG ; Yusheng WEI
Laboratory Animal and Comparative Medicine 2023;43(6):659-668
Improving the reproducibility of biomedical research results is a major challenge.Transparent and accurate reporting of the research process enables readers to evaluate the reliability of the research results and further explore the experiment by repeating it or building upon its findings. The ARRIVE 2.0 guidelines, released in 2019 by the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), provide a checklist applicable to any in vivo animal research report. These guidelines aim to improve the standardization of experimental design, implementation, and reporting, as well as the reliability, repeatability, and clinical translatability of animal experimental results. The use of ARRIVE 2.0 guidelines not only enriches the details of animal experimental research reports, ensuring that information on animal experimental results is fully evaluated and utilized, but also enables readers to understand the content expressed by the author accurately and clearly, promoting the transparency and integrity of the fundamental research review process. At present, the ARRIVE 2.0 guidelines have been widely adopted by international biomedical journals. This article is a Chinese translation based on the best practices of international journals following the ARRIVE 2.0 guidelines in international journals, specifically for the complete interpretation of the ARRIVE 2.0 guidelines published in the PLoS Biology journal in 2020 (original text can be found at
6.Explanation and Elaboration for the ARRIVE Guidelines 2.0—Reporting Animal Research and In Vivo Experiments (Ⅲ)
Xiaoyu LIU ; Xuancheng LU ; Xiaomeng SHI ; Yuzhou ZHANG ; Chao LÜ ; Guoyuan CHEN ; Xiao LU ; Yu BAI ; Jing GAO ; Yao LI ; Yonggang LIU ; Yufeng TAO ; Wanyong PANG
Laboratory Animal and Comparative Medicine 2023;43(4):446-456
Improving the reproducibility of biomedical research results is a major challenge.Researchers reporting their research process transparently and accurately can help readers evaluate the reliability of the research results and further explore the experiment by repeating it or building upon its findings. The ARRIVE 2.0 guidelines, released in 2019 by the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), provide a checklist applicable to any in vivo animal research report. These guidelines aim to improve the standardization of experimental design, implementation, and reporting, as well as the reliability, repeatability, and clinical translatability of animal experimental results. The use of ARRIVE 2.0 guidelines not only enriches the details of animal experimental research reports, ensuring that information on animal experimental results is fully evaluated and utilized, but also enables readers to understand the content expressed by the author accurately and clearly, promoting the transparency and integrity of the fundamental research review process. At present, the ARRIVE 2.0 guidelines have been widely adopted by international biomedical journals. This article is a Chinese translation based on the best practices of international journals following the ARRIVE 2.0 guidelines in international journals, specifically for the complete interpretation of the ARRIVE 2.0 guidelines published in the PLoS Biology journal in 2020 (original text can be found at
7.Explanation and Elaboration of the ARRIVE Guidelines 2.0—Reporting Animal Research and In Vivo Experiments (Ⅱ)
Guoyuan CHEN ; Xiao LU ; Yu BAI ; Lingzhi YU ; Ying QIAO ; Jian WANG ; Jin LU ; Xiaoyu LIU ; Xuancheng LU ; Jing GAO ; Yao LI ; Wanyong PANG
Laboratory Animal and Comparative Medicine 2023;43(3):323-331
Improving the reproducibility of biomedical research results remains a major challenge. Transparent and accurate reporting of progress can help readers evaluate the reliability of research results and further explore an experiment by repeating or building upon its findings. The ARRIVE 2.0 guidelines, released in 2019 by the UK National Centre for the Replacement, Refinement, and Reduction of Animals in Research (NC3Rs), provide a checklist applicable to any in vivo animal research report. These guidelines aim to improve the standardization of experimental design, implementation, and reporting, as well as the reliability, repeatability, and clinical translatability of animal experimental results. The use of the ARRIVE 2.0 guidelines not only enriches the details of animal experimental research reports, ensuring that information on animal experimental results is fully evaluated and utilized, but also enables readers to understand the content expressed by the author accurately and clearly, promoting the transparency and integrity of the fundamental research review process. At present, the ARRIVE 2.0 guidelines have been widely adopted by international biomedical journals. This article is the second part of the Chinese translation of the complete interpretation of the ARRIVE 2.0 guidelines published in PLoS Biology in 2020 (original text can be found at
8.Explanation and Elaboration for the ARRIVE Guidelines 2.0—Reporting Animal Research and In Vivo Experiments (Ⅰ)
Jian WANG ; Jin LU ; Zhengwen MA ; Guoyuan CHEN ; Xiao LU ; Yu BAI ; Xiaoyu LIU ; Xuancheng LU ; Jing GAO ; Yao LI ; Wanyong PANG
Laboratory Animal and Comparative Medicine 2023;43(2):213-224
Improving the reproducibility of biomedical research results is a major challenge. Researchers reporting their research process transparently and accurately can help readers evaluate the reliability of the research results and further explore the experiment by repeating it or building upon its findings. The ARRIVE 2.0 guidelines, released in 2019 by the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), provide a checklist applicable to any in vivo animal research report. These guidelines aim to improve the standardization of experimental design, implementation, and reporting, as well as the reliability, repeatability, and clinical translatability of animal experimental results. The use of ARRIVE 2.0 guidelines not only enriches the details of animal experimental research reports, ensuring that information on animal experimental results is fully evaluated and utilized, but also enables readers to understand the content expressed by the author accurately and clearly, promoting the transparency and integrity of the fundamental research review process. At present, the ARRIVE 2.0 guidelines have been widely adopted by international biomedical journals. this article is a Chinese translation based on the best practices of international journals following the ARRIVE 2.0 guidelines in international journals, specifically for the complete interpretation of the ARRIVE 2.0 guidelines published in the PLoS Biology journal in 2020 (original text can be found at
9.Introduction to the International Guide for Animal Research Reporting ARRIVE 2.0, and Its Implementation Plan in the Journal
Junyan ZHANG ; Xiaoyu LIU ; Yao LI ; Guoyuan CHEN ; Xiao LU ; Yu BAI ; Xuancheng LU ; Wanyong PANG ; Baojin WU
Laboratory Animal and Comparative Medicine 2023;43(1):86-94
Animal experiments play an important role in the process of biomedical research, and is a necessary way to transform basic medicine into clinical medicine. The standardization of animal experimental studies and reports determines the reliability and reproducibility of research results, and is also the key to transforming the results of animal experiments into clinical trials. In view of how to design and implement animal experiments, write animal experiment reports, and publish relevant academic papers in a more standardized way, LACM (Laboratory Animal and Comparative Medicine) has launched a new column of comparative medical research and reporting standards from 2023, focusing on the introduction and interpretation of international general norms related to laboratory animal and comparative medicine, such as ARRIVE 2.0 guidelines (Animal Research: Reporting of In Vivo Experiments). This article focuses on the development and application, basic content and priority of ARRIVE 2.0, as well as the scheme of implementing ARRIVE 2.0 guidelines in international biomedical journals, and explains the current situation and future plans of LACM following ARRIVE 2.0 guidelines. The research and report of animal experimental medicine following the ARRIVE 2.0 guidelines and other international norms is one of the important driving forces to promote the high-quality development of experimental animal science and biomedicine in China, and also a powerful means to implement the 3R principle and improve the welfare of laboratory animals. Through this article, we hope the majority of scientific researchers and editors will attach great importance and actively implement these international standards.
10.Fexaramine improves non-alcoholic fatty liver disease in mice by stimulating intestinal FXR
Lu-yao HUANG ; Qiong-wen XUE ; Yi-xuan LUO ; Zi-xuan WANG ; Jia-rui JIANG ; Shu-yang XU ; Li YANG ; Zheng-tao WANG ; Li-li DING
Acta Pharmaceutica Sinica 2023;58(11):3330-3338
Non-alcoholic fatty liver disease (NAFLD) is considered to be a manifestation of metabolic syndrome and has become one of the chronic diseases that endanger health around the world. There is still a lack of effective therapeutic drugs in clinical practice. Farnesoid X receptor (FXR) has been a popular target for NAFLD research in recent years. Fexaramine (Fex) is a potent and selective agonist of FXR, and its mechanism of action to improve NAFLD is unclear. Therefore, in this study, a mouse model of NAFLD was constructed using a high-fat, high-cholesterol diet and treated with Fex orally for 6 weeks. We evaluated the ameliorative effect of Fex on disorders of glucolipid metabolism in NAFLD mice, and preliminarily explored its potential mechanism of action. The animal experiments were approved by the Animal Ethics Committee of Shanghai University of Traditional Chinese Medicine (approval number: PZSHUTCM210913011). In this study, it was found that 100 mg·kg-1 Fex significantly inhibited body weight gain, alleviated insulin resistance, improved liver injury and lipid accumulation in NAFLD mice. The effect of Fex on the expression of hepatic intestinal FXR and its target genes in NAFLD mice was further examined. Analysis of serum and hepatic bile acid profiles and expression related to hepatic lipid metabolism. It was found that Fex could stimulate intestinal FXR, promote fibroblast growth factor 15 (FGF15) secretion, inhibit the expression of cytochrome P450 family 7 subfamily A member 1 (CYP7A1), the rate-limiting enzyme of bile acid synthesis in liver, regulate bile acid synthesis by negative feedback, and improve the disorder of bile acid metabolism. At the same time, Fex reduces liver lipid synthesis and absorption, increases fatty acid oxidation, thus improving liver lipid metabolism. This study shows that Fex can improve NAFLD by activating intestinal FXR-FGF15 signal pathway and regulating liver lipid metabolism.


Result Analysis
Print
Save
E-mail