1.Protective effect of catalpolon destruction of tight junctions of high glucose induced BMECs.
Li ZOU ; Ke LIU ; Hui-Feng ZHU ; Shan FENG
China Journal of Chinese Materia Medica 2018;43(20):4118-4124
This paper aimed to observe the protective effect of catalpol on the high glucose induced destruction of tight junctions of rat primary brain microvascular endothelial cells (BMECs). Catalpol co-administrated with high glucose increased BMECs survival, decreased its ET-1 secretion, and improved transmembrane electrical resistance in a time-dependent manner. Furthermore, transmission electron microscopy was used to observe catalpol's protective effect on tight junction. Fluorescence staining displayed that catalpol reversed the rearrangement of the cytoskeleton protein F-actin and up-regulated the tight junction proteins claudin-5 and ZO-1, which were further demonstrated by the mRNA expression levels of claudin-5, occludin, ZO-1, ZO-2, ZO-3, -actintin, vinculin and cateinins. This study indicated that catalpol reverses the disaggregation of cytoskeleton actin in BMECs and up-regulates the expression of tight junction proteins, such as claudin-5, occludin, and ZO-1, and finally alleviates the increase in high glucose-induced BMECs injury.
Actin Cytoskeleton
;
drug effects
;
Actins
;
metabolism
;
Animals
;
Brain
;
cytology
;
Cells, Cultured
;
Claudin-5
;
metabolism
;
Endothelial Cells
;
drug effects
;
Glucose
;
Iridoid Glucosides
;
pharmacology
;
Phosphoproteins
;
Rats
;
Tight Junctions
;
drug effects
;
Zonula Occludens-1 Protein
;
metabolism
2.Aqueous extracts of Tribulus terrestris protects against oxidized low-density lipoprotein-induced endothelial dysfunction.
Yue-hua JIANG ; Chuan-hua YANG ; Wei LI ; Sai WU ; Xian-qing MENG ; Dong-na LI
Chinese journal of integrative medicine 2016;22(3):193-200
OBJECTIVETo investigate the role of aqueous extracts of Tribulus terrestris (TT) against oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) dysfunction in vitro.
METHODSHUVECs were pre-incubated for 60 min with TT (30 and 3 μg/mL respectively) or 10(-5) mol/L valsartan (as positive controls) and then the injured endothelium model was established by applying 100 μg/mL ox-LDL for 24 h. Cell viability of HUVECs was observed by real-time cell electronic sensing assay and apoptosis rate by Annexin V/PI staining. The cell migration assay was performed with a transwell insert system. Cytoskeleton remodeling was observed by immunofluorescence assay. The content of endothelial nitric oxide synthase (eNOS) was measured by enzyme-linked immunosorbent assay. Intracellular reactive oxygen species (ROS) generation was assessed by immunofluorescence and flow cytometer. Key genes associated with the metabolism of ox-LDL were chosen for quantitative real-time polymerase chain reaction to explore the possible mechanism of TT against oxidized LDL-induced endothelial dysfunction.
RESULTSTT suppressed ox-LDL-induced HUVEC proliferation and apoptosis rates significantly (41.1% and 43.5% after treatment for 3 and 38 h, respectively; P<0.05). It also prolonged the HUVEC survival time and postponed the cell's decaying stage (from the 69th h to over 100 h). According to the immunofluorescence and transwell insert system assay, TT improved the endothelial cytoskeletal network, and vinculin expression and increased cell migration. Additionally, TT regulated of the synthesis of endothelial nitric oxide synthase and generation of intracellular reactive oxygen species (P<0.05). Both 30 and 3 μg/mL TT demonstrated similar efficacy to valsartan. TT normalized the increased mRNA expression of PI3Kα and Socs3. It also decreased mRNA expression of Akt1, AMPKα1, JAK2, LepR and STAT3 induced by ox-LDL. The most notable changes were JAK2, LepR, PI3Kα, Socs3 and STAT3.
CONCLUSIONSTT demonstrated potential lowering lipid benefits, anti-hypertension and endothelial protective effects. It also suggested that the JAK2/STAT3 and/or PI3K/AKT pathway might be a very important pathway which was involved in the pharmacological mechanism of TT as the vascular protective agent.
Apoptosis ; drug effects ; Cell Movement ; drug effects ; Cell Survival ; drug effects ; Cytoskeleton ; drug effects ; metabolism ; Endothelium, Vascular ; drug effects ; pathology ; physiopathology ; Enzyme-Linked Immunosorbent Assay ; Fluorescent Antibody Technique ; Gene Expression Regulation ; drug effects ; Human Umbilical Vein Endothelial Cells ; drug effects ; Humans ; Lipoproteins, LDL ; adverse effects ; Nitric Oxide Synthase Type III ; metabolism ; Plant Extracts ; pharmacology ; Protective Agents ; pharmacology ; Reactive Oxygen Species ; metabolism ; Tribulus ; chemistry ; Vinculin ; metabolism ; Water ; chemistry
3.Impact of the CFTR chloride channel on the cytoskeleton of mouse Sertoli cells.
Hong-liang ZHANG ; Zhe ZHANG ; Hui JIANG ; Yu-chun GU ; Kai HONG ; Wen-hao TANG ; Lian-ming ZHAO ; De-feng LIU ; Jia-ming MAO ; Yu-zhuo YANG
National Journal of Andrology 2016;22(2):110-115
OBJECTIVETo study the impact of the chloride channel dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) on the cytoskeleton of Sertoli cells in the mouse.
METHODSTM4 Sertoli cells were cultured and treated with CFTR(inh)-172 at the concentrations of 1, 5, 10 and 20 μmol/L for 48 hours. Then the cytotoxicity of CFT(inh)-172 was assessed by CCK-8 assay, the expressions of F-actin and Ac-tub in the TM4 Sertoli cells detected by immunofluorescence assay, and those of N-cadherin, vimentin and vinculin determined by qPCR.
RESULTSCFTR(inh)-172 produced cytotoxicity to the TM4 Sertoli cells at the concentration of 20 μmol/L. The expressions of F-actin and Ac-tub were decreased gradually in the TM4 Sertoli cells with the prolonging of treatment time and increasing concentration of CFTR(inh)-172 (P < 0.05). The results of qPCR showed that different concentrations of CFTR(inh)-172 worked no significant influence on the mRNA expressions of N-cadherin, vimentin and vinculin in the Sertoli cells.
CONCLUSIONThe CFTR chloride channel plays an important role in maintaining the normal cytoskeleton of Sertoli cells. The reduced function and expression of the CFTR chloride channel may affect the function of Sertoli cells and consequently spermatogenesis of the testis.
Actins ; metabolism ; Animals ; Benzoates ; pharmacology ; Chloride Channels ; physiology ; Cystic Fibrosis Transmembrane Conductance Regulator ; antagonists & inhibitors ; Cytoskeleton ; drug effects ; Male ; Mice ; Sertoli Cells ; drug effects ; metabolism ; Spermatogenesis ; Thiazolidines ; pharmacology ; Time Factors
4.Proteomic and bioinformatic analyses of possible target-related proteins of gambogic acid in human breast carcinoma MDA-MB-231 cells.
Dong LI ; Xiao-Yi SONG ; Qing-Xi YUE ; Ya-Jun CUI ; Miao LIU ; Li-Xing FENG ; Wan-Ying WU ; Bao-Hong JIANG ; Min YANG ; Xiao-Bo QU ; Xuan LIU ; De-An GUO
Chinese Journal of Natural Medicines (English Ed.) 2015;13(1):41-51
Gambogic acid (GA) is an anticancer agent in phase ‖b clinical trial in China but its mechanism of action has not been fully clarified. The present study was designed to search the possible target-related proteins of GA in cancer cells using proteomic method and establish possible network using bioinformatic analysis. Cytotoxicity and anti-migration effects of GA in MDA-MB-231 cells were checked using MTT assay, flow cytometry, wound migration assay, and chamber migration assay. Possible target-related proteins of GA at early (3 h) and late stage (24 h) of treatment were searched using a proteomic technology, two-dimensional electrophoresis (2-DE). The possible network of GA was established using bioinformatic analysis. The intracellular expression levels of vimentin, keratin 18, and calumenin were determined using Western blotting. GA inhibited cell proliferation and induced cell cycle arrest at G2/M phase and apoptosis in MDA-MB-231 cells. Additionally, GA exhibited anti-migration effects at non-toxic doses. In 2-DE analysis, totally 23 possible GA targeted proteins were found, including those with functions in cytoskeleton and transport, regulation of redox state, metabolism, ubiquitin-proteasome system, transcription and translation, protein transport and modification, and cytokine. Network analysis of these proteins suggested that cytoskeleton-related proteins might play important roles in the effects of GA. Results of Western blotting confirmed the cleavage of vimentin, increase in keratin 18, and decrease in calumenin levels in GA-treated cells. In summary, GA is a multi-target compound and its anti-cancer effects may be based on several target-related proteins such as cytoskeleton-related proteins.
Antineoplastic Agents
;
pharmacokinetics
;
Apoptosis
;
drug effects
;
Breast Neoplasms
;
drug therapy
;
metabolism
;
Calcium-Binding Proteins
;
genetics
;
Cell Line, Tumor
;
Cell Migration Assays
;
Cell Migration Inhibition
;
drug effects
;
Cell Proliferation
;
drug effects
;
Computational Biology
;
methods
;
Cytoskeleton
;
metabolism
;
Electrophoresis, Gel, Two-Dimensional
;
Flow Cytometry
;
Gene Expression
;
Humans
;
Keratin-18
;
genetics
;
Oxidation-Reduction
;
Protein Biosynthesis
;
drug effects
;
Protein Transport
;
Proteomics
;
methods
;
Transcription, Genetic
;
drug effects
;
Ubiquitin-Specific Proteases
;
pharmacokinetics
;
Vimentin
;
genetics
;
Xanthones
;
pharmacokinetics
5.Tanshinone II a protects against lipopolysaccharides-induced endothelial cell injury via Rho/Rho kinase pathway.
Wei LI ; Wei SUN ; Chuan-hua YANG ; Hong-zhen HU ; Yue-hua JIANG
Chinese journal of integrative medicine 2014;20(3):216-223
OBJECTIVETo test whether tanshinone II A (Tan II A), a highly valued herb derivative to treat vascular diseases in Chinese medicine, could protect endothelial cells from bacterial endotoxin (lipopolysaccharides, LPS)-induced endothelial injury.
METHODSEndothelial cell injury was induced by treating human umbilical vein endothelial cells (HUVECs) with 0.2 μg/mL LPS for 24 h. Y27632 and valsartan were used as positive controls. The effects of tanshinone II A on the LPS-induced cell viability and apoptosis rate of HUVECs were tested by flow cytometry, cell migration by transwell, adhesion by a 96-well plate pre-coated with vitronectin and cytoskeleton reorganization by immunofluorescence assay. Rho/Rho kinase (ROCK) pathway-associated gene and protein expression were examined by microarray assay; quantitative real-time polymerase chain reaction and Western blotting were used to confirm the changes observed by microarray.
RESULTSTan II A improved cell viability, suppressed apoptosis and protected cells from LPS-induced reductions in cell migration and adhesion at a comparable magnitude to that of Y27632 and valsartan. Tan II A, Y27632 and valsartan also normalized LPS-induced actomyosin contraction and vinculin protein aggregation. A microarray assay revealed increased levels of fibronectin, integrin A5 (ITG A5), Ras homolog gene family member A (RhoA), myosin light chain phosphatase, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K, or PIP2 in Western blotting), focal adhesion kinase, vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in the damaged HUVECs, which were attenuated to different degrees by Tan II A, Y27632 and valsartan.
CONCLUSIONTan II A exerted a strong protective effect on HUVECs, and the mechanism was caused, at least in part, by a blockade in the Rho/ROCK pathway, presumably through the down-regulation of ITG A5.
Apoptosis ; drug effects ; Cell Adhesion ; drug effects ; Cell Movement ; drug effects ; Cell Shape ; drug effects ; Cell Survival ; drug effects ; Cytoprotection ; drug effects ; Cytoskeleton ; drug effects ; metabolism ; Diterpenes, Abietane ; chemistry ; pharmacology ; Down-Regulation ; drug effects ; genetics ; Human Umbilical Vein Endothelial Cells ; drug effects ; enzymology ; pathology ; Humans ; Integrin alphaV ; metabolism ; Lipopolysaccharides ; Myosin Light Chains ; metabolism ; Oligonucleotide Array Sequence Analysis ; Phosphatidylinositol 4,5-Diphosphate ; metabolism ; Protective Agents ; pharmacology ; Signal Transduction ; drug effects ; Up-Regulation ; drug effects ; genetics ; Vinculin ; metabolism ; rho GTP-Binding Proteins ; metabolism ; rho-Associated Kinases ; metabolism
6.Effects of salvianolic acid B on endothelin-1-induced contraction and cytoskeleton organization of hepatic stellate cells in rats.
Hong XU ; Chao LU ; Jian PING ; Yang ZHOU ; Lieming XU
Chinese Journal of Hepatology 2014;22(4):281-284
OBJECTIVETo investigate the effects of salvianolic acid B (Sal B) on endothelin-1 (ET1)-induced contraction and cytoskeleton reorganization of rat hepatic stellate cells (HSCs).
METHODSHSCs were collected from Sprague-Dawley rats by in situ perfusion with pronase E and isolated by density-gradient centrifugation with Nycodenz. Cells were treated with ET-1, with or without Sal B or Y-27632 (a specific inhibitor of rho-associated protein kinases) pretreatment. HSC contraction was evaluated by collagen gel contraction assay. Cytoskeletal reorganization in response to ET-1 was evaluated by detecting changes in phosphorylation of myosin light chain 2 (MLC2) using glycerol-urea PAGE and the Odyssey Infrared Imaging System. Changes in actin stress fiber polymerization were detected by FITC-labeled phalloidin. Differences between the various cell treatment/pretreatment groups were statistically analyzed.
RESULTSCompared to the untreated control cells, the lattice area of ET-1-treated cells showed significant shrinkage (76.89% ± 3.84% vs. 37.10% ± 5.10%; P less than 0.01). Pretreatment with 105 M Sal B or 105 M Y-27632 significantly reduced ET-1-induced contraction (67.01% ± 4.14% and 77.28% ± 2.00%, respectively; bothP less than 0.01 vs. the ET-1-treated cells). The untreated control cells showed a basal MLC2 phosphorylation of (0.35 ± 0.05) mol PO4/mol MLC2. In contrast, ET-1 treatment elicited a rapid and sustained MLC2 phosphorylation, which was (0.87 ± 0.04) mol PO₄/mol MLC2 at 5 min post-treatment and with the maximal level of (0.96 ± 0.04) mol PO₄/mol MLC2 detected at 30 min post-treatment. The Sal B pretreatment led to a significant decrease in ET-1-induced MLC2 phosphorylation (by 63.1%) and an obvious disassembly of actin stress fibers.
CONCLUSIONSal B effectively inhibits ET-1-induced rat HSC contraction, through its suppressive effects on MLC2 phosphorylation and promotion of the disassembly of actin stress fibers.
Actins ; metabolism ; Animals ; Benzofurans ; pharmacology ; Cardiac Myosins ; metabolism ; Cell Shape ; Cells, Cultured ; Cytoskeleton ; drug effects ; Endothelin-1 ; pharmacology ; Hepatic Stellate Cells ; cytology ; drug effects ; Male ; Myosin Light Chains ; metabolism ; Phosphorylation ; Rats ; Rats, Sprague-Dawley
7.Suilysin remodels the cytoskeletons of human brain microvascular endothelial cells by activating RhoA and Rac1 GTPase.
Qingyu LV ; Huaijie HAO ; Lili BI ; Yuling ZHENG ; Xuyu ZHOU ; Yongqiang JIANG
Protein & Cell 2014;5(4):261-264
Brain
;
Cholesterol
;
chemistry
;
Cytoskeleton
;
drug effects
;
Endothelial Cells
;
cytology
;
metabolism
;
Hemolysin Proteins
;
chemistry
;
pharmacology
;
Humans
;
Phalloidine
;
pharmacology
;
Pseudopodia
;
drug effects
;
Stress Fibers
;
drug effects
;
rac1 GTP-Binding Protein
;
metabolism
;
rhoA GTP-Binding Protein
;
metabolism
8.Effects of platelet-rich fibrin extract on MC3T3-E1 cell.
Kai DONG ; Zhong-hao LIU ; Xiao-jie ZHANG ; Feng-wei XU
Chinese Journal of Stomatology 2013;48(5):288-293
OBJECTIVETo evaluate the effect of platelet-rich fibrin extract (PRFe) on proliferation and differentiation and F-actin cytoskeleton of osteoblasts.
METHODSThe experimental group used the α-minimum essential medium (α-MEM) containing PRFe (10% fetal bovine serum), and the control group used the α-MEM (10% fetal bovine serum). The number of the osteoblasts at 1st, 3rd, 5th d was detected by methyl thiazolyl tetrazolium (MTT) assay, and the differentiation of osteoblast at 1st, 3rd, 5th,7 th d detected by the activity of alkaline phosphatase (ALP).The alizarin red dye was used to observe the number of calcium nodus at 14th, 21st d. The F-actin cytoskeleton was evaluated by confocal laser scanning microscope(CLSM) at 3rd,6th,9th,12th h. The level of osteogenetic biomarkers osteocalcin (OCN) and core-binding factor α1(Cbfα1) at 3rd,7th d were quantified by real-time PCR.
RESULTSA significant increase of absorbance at 1st, 3rd, 5th d was showed in experimental group (0.336 ± 0.011, 0.571 ± 0.039, 0.787 ± 0.050) compared to control group (0.300 ± 0.021, 0.387 ± 0.040, 0.527 ± 0.034) (P < 0.05). The absorbance of experimental group at 1st, 3rd, 5th, 7th d (0.146 ± 0.014, 0.199 ± 0.017, 0.390 ± 0.020, 0.492 ± 0.019) was significantly higher than that of control group (0.115 ± 0.014, 0.145 ± 0.015, 0.190 ± 0.015, 0.230 ± 0.026) (P < 0.05). The integrated absorbance of the calcium nodus in experimental group at 14th, 21st d (22.119 ± 3.694, 31.528 ± 3.162) was significantly higher than in control group (8.498 ± 2.041, 15.162 ± 2.526) (P < 0.05). The Cbfα1 and OCN gene expression in experimental group was higher than in control group (P < 0.05).
CONCLUSIONSPRFe could enhance the proliferation and differentiation of osteoblasts and promote the spread of F-actin cytoskeleton.
Alkaline Phosphatase ; metabolism ; Animals ; Cell Differentiation ; drug effects ; Cell Line ; Cell Proliferation ; drug effects ; Core Binding Factor Alpha 1 Subunit ; metabolism ; Cytoskeleton ; drug effects ; Fibrin ; isolation & purification ; pharmacology ; Male ; Mice ; Osteoblasts ; cytology ; Osteocalcin ; metabolism ; Platelet-Rich Plasma ; chemistry ; Rats ; Rats, Sprague-Dawley
9.Cytosolic Ca(2+) as a multifunctional modulator is required for spermiogenesis in Ascaris suum.
Yunlong SHANG ; Lianwan CHEN ; Zhiyu LIU ; Xia WANG ; Xuan MA ; Long MIAO
Protein & Cell 2013;4(6):456-466
The dynamic polar polymers actin filaments and microtubules are usually employed to provide the structural basis for establishing cell polarity in most eukaryotic cells. Radially round and immotile spermatids from nematodes contain almost no actin or tubulin, but still have the ability to break symmetry to extend a pseudopod and initiate the acquisition of motility powered by the dynamics of cytoskeleton composed of major sperm protein (MSP) during spermiogenesis (sperm activation). However, the signal transduction mechanism of nematode sperm activation and motility acquisition remains poorly understood. Here we show that Ca(2+) oscillations induced by the Ca(2+) release from intracellular Ca(2+) store through inositol (1,4,5)-trisphosphate receptor are required for Ascaris suum sperm activation. The chelation of cytosolic Ca(2+) suppresses the generation of a functional pseudopod, and this suppression can be relieved by introducing exogenous Ca(2+) into sperm cells. Ca(2+) promotes MSP-based sperm motility by increasing mitochondrial membrane potential and thus the energy supply required for MSP cytoskeleton assembly. On the other hand, Ca(2+) promotes MSP disassembly by activating Ca(2+)/calmodulin-dependent serine/threonine protein phosphatase calcineurin. In addition, Ca(2+)/camodulin activity is required for the fusion of sperm-specifi c membranous organelle with the plasma membrane, a regulated exocytosis required for sperm motility. Thus, Ca(2+) plays multifunctional roles during sperm activation in Ascaris suum.
Animals
;
Ascaris suum
;
metabolism
;
Calcineurin
;
metabolism
;
Calcium
;
metabolism
;
Calmodulin
;
metabolism
;
Cytoskeleton
;
metabolism
;
Cytosol
;
metabolism
;
Egtazic Acid
;
analogs & derivatives
;
pharmacology
;
Helminth Proteins
;
metabolism
;
Inositol 1,4,5-Trisphosphate Receptors
;
metabolism
;
Male
;
Membrane Potential, Mitochondrial
;
physiology
;
Mitochondria
;
metabolism
;
Pseudopodia
;
metabolism
;
Signal Transduction
;
Sperm Motility
;
Spermatids
;
drug effects
;
physiology
;
Spermatogenesis
;
Type C Phospholipases
;
metabolism
10.Staurosporine and cytochalasin D induce chondrogenesis by regulation of actin dynamics in different way.
Minjung KIM ; Kyung SONG ; Eun Jung JIN ; Jongkyung SONN
Experimental & Molecular Medicine 2012;44(9):521-528
Actin cytoskeleton has been known to control and/or be associated with chondrogenesis. Staurosporine and cytochalasin D modulate actin cytoskeleton and affect chondrogenesis. However, the underlying mechanisms for actin dynamics regulation by these agents are not known well. In the present study, we investigate the effect of staurosporine and cytochalasin D on the actin dynamics as well as possible regulatory mechanisms of actin cytoskeleton modulation. Staurosporine and cytochalasin D have different effects on actin stress fibers in that staurosporine dissolved actin stress fibers while cytochalasin D disrupted them in both stress forming cells and stress fiber-formed cells. Increase in the G-/F-actin ratio either by dissolution or disruption of actin stress fiber is critical for the chondrogenic differentiation. Cytochalasin D reduced the phosphorylation of cofilin, whereas staurosporine showed little effect on cofilin phosphorylation. Either staurosporine or cytochalasin D had little effect on the phosphorylation of myosin light chain. These results suggest that staurosporine and cytochalasin D employ different mechanisms for the regulation of actin dynamics and provide evidence that removal of actin stress fibers is crucial for the chondrogenic differentiation.
Actin Cytoskeleton/*drug effects
;
Actins/metabolism
;
Animals
;
Cell Differentiation/*drug effects
;
Cells, Cultured
;
Chickens
;
Chondrogenesis/*drug effects
;
Cytochalasin D/*pharmacology
;
Mesoderm/cytology/drug effects
;
Myosin Light Chains/metabolism
;
Nucleic Acid Synthesis Inhibitors/*pharmacology
;
Phosphorylation
;
Staurosporine/*pharmacology
;
Stress Fibers/drug effects

Result Analysis
Print
Save
E-mail