1.Clinical characteristics of four children with 3M syndrome and a literature review.
Ningan XU ; Kangxiang LIU ; Yan ZHONG
Chinese Journal of Medical Genetics 2023;40(7):795-801
		                        		
		                        			OBJECTIVE:
		                        			To analyze the clinical features of 3M syndrome and effect of growth hormone therapy.
		                        		
		                        			METHODS:
		                        			Clinical data of four children diagnosed with 3M syndrome by whole exome sequencing at Hunan Children's Hospital from January 2014 to February 2022 were retrospectively analyzed, which included clinical manifestation, results of genetic testing and recombinant human growth hormone (rhGH) therapy. A literature review was also carried our for Chinese patients with 3M syndrome.
		                        		
		                        			RESULTS:
		                        			The clinical manifestations of the 4 patients included severe growth retardation, facial dysmorphism and skeletal malformations. Two patients were found to harbor homozygous variants of CUL7 gene, namely c.4717C>T (p.R1573*) and c.967_993delinsCAGCTGG (p.S323Qfs*33). Two patients were found to harbor 3 heterozygous variants of the OBSL1 gene including c.1118G>A (p.W373*), c.458dupG (p.L154Pfs*1002) and c.690dupC (p.E231Rfs*23), among which c.967_993delinsCAGCTGG and c.1118G>A were unreported previously. Eighteen Chinese patients with 3M syndrome were identified through the literature review, including 11 cases (11/18, 61.1%) carrying CUL7 gene variants and 7 cases (7/18, 38.9%) carrying OBSL1 gene variants. The main clinical manifestations were in keeping with previously reported. Four patients were treated with growth hormone, 3 showed obvious growth acceleration, and no adverse reaction was noted.
		                        		
		                        			CONCLUSION
		                        			3M syndrome has a typical appearance and obvious short stature. To attain accurate diagnosis, genetic testing should be recommended for children with a stature of less than -3 SD and facial dysmorphism. The long-term efficacy of growth hormone therapy for patients with 3M syndrome remains to be observed.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Child
		                        			;
		                        		
		                        			Retrospective Studies
		                        			;
		                        		
		                        			Dwarfism/genetics*
		                        			;
		                        		
		                        			Muscle Hypotonia/genetics*
		                        			;
		                        		
		                        			Growth Hormone/therapeutic use*
		                        			;
		                        		
		                        			Cytoskeletal Proteins/genetics*
		                        			
		                        		
		                        	
2.Lung Squamous Cell Carcinoma with EML4-ALK Fusion and TP53 Co-mutation Treated with Ensartinib: A Case Report and Literature Review.
Donglai LV ; Chunwei XU ; Chong WANG ; Qiuju SANG
Chinese Journal of Lung Cancer 2023;26(1):78-82
		                        		
		                        			
		                        			Lung squamous cell carcinoma (LSCC) accounts for approximately 30% of non-small cell lung cancer (NSCLC) cases and is the second most common histological type of lung cancer. Anaplastic lymphoma kinase (ALK)-positive NSCLC accounts for only 2%-5% of all NSCLC cases, and is almost exclusively detected in patients with lung adenocarcinoma. Thus, ALK testing is not routinely performed in the LSCC population, and the efficacy of such treatment for ALK-rearranged LSCC remains unknown. Echinoderm microtubule associated protein like 4 (EML4)-ALK (V1) and TP53 co-mutations were identified by next generation sequencing (NGS) in this patient with advanced LSCC. On December 3, 2020, Ensatinib was taken orally and the efficacy was evaluated as partial response (PR). The progression-free survival (PFS) was 19 months. When the disease progressed, the medication was changed to Loratinib. To our knowledge, Enshatinib created the longest PFS of ALK-mutant LSCC patients treated with targeted therapy since literature review. Herein, we described one case treated by Enshatinib involving a patient with both EML4-ALK and TP53 positive LSCC, and the relevant literatures were reviewed for discussing the treatment of this rare disease.
.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Carcinoma, Non-Small-Cell Lung/drug therapy*
		                        			;
		                        		
		                        			Lung Neoplasms/pathology*
		                        			;
		                        		
		                        			Anaplastic Lymphoma Kinase/metabolism*
		                        			;
		                        		
		                        			Carcinoma, Squamous Cell/genetics*
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Cytoskeletal Proteins/genetics*
		                        			;
		                        		
		                        			Lung/pathology*
		                        			;
		                        		
		                        			Oncogene Proteins, Fusion/genetics*
		                        			;
		                        		
		                        			Protein Kinase Inhibitors/therapeutic use*
		                        			;
		                        		
		                        			Tumor Suppressor Protein p53/genetics*
		                        			
		                        		
		                        	
3.Clinical and genetic analysis of eight children with Primary hypertrophic cardiomyopathy.
Qiqing SUN ; Fangjie WANG ; Linbo SU ; Kun HE ; Yingying LI ; Chanjuan HAO ; Wei LI ; Jun GUO
Chinese Journal of Medical Genetics 2023;40(10):1211-1216
		                        		
		                        			OBJECTIVE:
		                        			To explore the clinical and genetic characteristics of eight children with Primary hypertrophic cardiomyopathy (HCM).
		                        		
		                        			METHODS:
		                        			Eight children with HCM admitted to the Department of Cardiology of Henan Children's Hospital from January 2018 to December 2021 were selected as the study subjects. Clinical data of the children were collected. Whole exome sequencing was carried out on two children, and trio whole exome sequencing was carried out on the remainder 6 children. Sanger sequencing was used to verify the candidate variants in the children and their parents, and the pathogenicity of the variants was evaluated based on the guidelines from the American College of Medical Genetics and Genomics (ACMG).
		                        		
		                        			RESULTS:
		                        			The patients had included 5 males and 3 females, with their ages ranging from 5 to 13 years old. The average age of diagnosis was (7.87 ± 4.8) years old, and the cardiac phenotype showed non-obstructive HCM in all of the patients. WES has identified variants of the MYH7 gene in 4 children, including c.2155C>T (p.Arg719Trp), c.1208G>A (p.Arg403Gln), c.1358G>A (p.Arg453His), and c.1498G>A (p.Glu500Lys). Based on the guidelines from the ACMG, the first 3 variants were classified as pathogenic, while c.1498G>A (p.Glu500Lys) was classified as likely pathogenic (PM1+PM2_Supporting+PM6+PP3), which was also unreported previously. The remaining four children had all harbored maternal variants, including MYL2: c.173G>A (p.Arg58Gln; classified as pathogenic), TPM1: c.574G>A (p.Glu192Lys) and ACTC1: c.301G>A (p.Glu101Lys)(both were classified as likely pathogenic), and MYBPC3: c.146T>G (p.Ile49Ser; classified as variant of uncertain significance). Seven children were treated with 0.5 ~ 3 mg/(kg·d) propranolol, and their symptoms had improved significantly. They were followed up until September 30, 2022 without further cardiac event.
		                        		
		                        			CONCLUSION
		                        			Genetic testing can clarify the molecular basis for unexplained cardiomyopathy and provide a basis for clinical diagnosis and genetic counseling. Discovery of the c.1498G>A (p.Glu500Lys) variant has also expanded the spectrum of MYH7 gene mutations underlying HCM.
		                        		
		                        		
		                        		
		                        			Female
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Child
		                        			;
		                        		
		                        			Child, Preschool
		                        			;
		                        		
		                        			Adolescent
		                        			;
		                        		
		                        			Cytoskeletal Proteins
		                        			;
		                        		
		                        			Family
		                        			;
		                        		
		                        			Genetic Counseling
		                        			;
		                        		
		                        			Genetic Testing
		                        			;
		                        		
		                        			Cardiomyopathy, Hypertrophic/genetics*
		                        			
		                        		
		                        	
4.Non-muscle myosin heavy chain 9 gene-related disorders with thrombocytopenia: report of two pedigrees and literature review.
Shu Ting MAO ; Bai LI ; Dao WANG ; Shan Shan LIU ; Shu Fang SU ; Lin Lin WEI ; Fang Yuan CHAI ; Ying LIU ; Yu Feng LIU
Chinese Journal of Pediatrics 2023;61(9):833-838
		                        		
		                        			
		                        			Objective: To summarize the clinical characteristics and gene variants of 2 pedigrees of non-muscle myosin heavy chain 9 related diseases (MYH9-RD) in children. Methods: The basic information, clinical features, gene variants and laboratory tests of MYH9-RD patients from 2 pedigrees confirmed in the First Affiliated Hospital of Zhengzhou University in November 2021 and July 2022 were analyzed retrospectively. "Non-muscle myosin heavy chain 9 related disease" "MYH9" and "children" were used as key words to search at Pubmed database, CNKI and Wanfang database up to February 2023. The MYH9-RD gene variant spectrum and clinical data were analyzed and summarized. Results: Proband 1 (male, 11 years old) sought medical attention due to epistaxis, the eldest sister and second sister of proband 1 only showed excessive menstrual bleeding, the skin and mucous membrane of the their mother were prone to ecchymosis after bumping, the uncle of proband 1 had kidney damage, and the maternal grandmother and maternal great-grandmother of proband 1 had a history of cataracts. There were 7 cases of phenotypic abnormalities in this pedigree. High-throughput sequencing showed that the proband 1 MYH9 gene had c.279C>G (p.N93K) missense variant, and family verification analysis showed that the variant was inherited from the mother. A total of 4 patients including proband 1 and family members were diagnosed with MYH9-RD. The proband 2 (female, 1 year old) sought medical attention duo to fever and cough, and the father's physical examination revealed thrombocytopenia. There were 2 cases of phenotypic abnormalities in this pedigree. High-throughput sequencing showed that there was a c.4270G>A (p.D1424N) missense variant in the proband 2 MYH9 gene, and family verification analysis showed that the variant was inherited from the father. A total of 2 patients including proband 2 and his father were diagnosed with MYH9-RD. A total of 99 articles were retrieved, including 32 domestic literatures and 67 foreign literatures. The MYH9-RD cases totaled 149 pedigrees and 197 sporadic patients, including 2 pedigrees in our study. There were 101 cases with complete clinical data, including 62 sporadic cases and 39 pedigrees. There were 56 males and 45 females, with an average age of 6.9 years old. The main clinical manifestations were thrombocytopenia, skin ecchymosis, and epistaxis. Most patients didn't receive special treatment after diagnosis. Six English literatures related to MYH9-RD caused by c.279C>G mutation in MYH9 gene were retrieved. Italy reported the highest number of cases (3 cases). Twelve literatures related to MYH9-RD caused by c.4270G>A mutation in MYH9 gene were retrieved. China reported the highest number of cases (9 cases). Conclusions: The clinical manifestations of patients in the MYH9-RD pedigrees varied greatly. MYH9 gene c.279C>G and c.4270G>A mutations are the cause of MYH9-RD.
		                        		
		                        		
		                        		
		                        			Infant
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Child
		                        			;
		                        		
		                        			Myosin Heavy Chains/genetics*
		                        			;
		                        		
		                        			Ecchymosis
		                        			;
		                        		
		                        			Epistaxis
		                        			;
		                        		
		                        			Pedigree
		                        			;
		                        		
		                        			Retrospective Studies
		                        			;
		                        		
		                        			Muscular Diseases
		                        			;
		                        		
		                        			Thrombocytopenia
		                        			;
		                        		
		                        			Cytoskeletal Proteins
		                        			
		                        		
		                        	
6.Diagnosis of a child with mitochondrial myopathy and cerebellar atrophy with ataxia due to compound heterozygous variants of MSTO1 gene.
Yang TIAN ; Zhen SHI ; Chi HOU ; Wenjuan LI ; Haixia ZHU ; Xiaojing LI ; Wenxiong CHEN
Chinese Journal of Medical Genetics 2022;39(4):417-420
		                        		
		                        			OBJECTIVE:
		                        			To explore the genetic basis for a child with myopathy and cerebellar atrophy with ataxia.
		                        		
		                        			METHODS:
		                        			Clinical examinations and laboratory testing were carried out for the patient. The proband and the parents' genomic DNA was extracted from peripheral blood samples and subjected to trio whole-exome sequencing. Candidate variant was validated by Sanger sequencing.
		                        		
		                        			RESULTS:
		                        			The 1-year-and-8-month-old boy manifested motor developmental delay, ataxia, hypomyotonia, increased serum creatine kinase. Cranial MRI showed cerebellar atrophy with progressive aggravation. Genetic testing revealed that the patient has harbored compound heterozygous variants of the MSTO1 gene, namely c.13delG (p.Ala5ProfsTer68) and c.971C>T (p.Thr324Ile), which were respectively inherited from his mother and father. The former was unreported previously and was predicted to be likely pathogenic, whilst the latter has been reported previously and was predicted to be of uncertain significance.
		                        		
		                        			CONCLUSION
		                        			The compound heterozygous c.13delG (p.Ala5ProfsTer68) and c.971C>T (p.Thr324Ile) variants probably underlay the disease in the proband. Above finding has enriched the spectrum of MSTO1 gene variants underlying mitochondrial myopathy and cerebellar atrophy with ataxia.
		                        		
		                        		
		                        		
		                        			Ataxia/genetics*
		                        			;
		                        		
		                        			Atrophy/genetics*
		                        			;
		                        		
		                        			Cell Cycle Proteins/genetics*
		                        			;
		                        		
		                        			Child
		                        			;
		                        		
		                        			Cytoskeletal Proteins/genetics*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Infant
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mitochondrial Myopathies
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Neurodegenerative Diseases
		                        			;
		                        		
		                        			Whole Exome Sequencing
		                        			
		                        		
		                        	
7.The mechanism of enriched environment repairing the learning and memory impairment in offspring of prenatal stress by regulating the expression of activity-regulated cytoskeletal-associated and insulin-like growth factor-2 in hippocampus.
Su-Zhen GUAN ; You-Juan FU ; Feng ZHAO ; Hong-Ya LIU ; Xiao-Hui CHEN ; Fa-Qiu QI ; Zhi-Hong LIU ; Tzi Bun NG
Environmental Health and Preventive Medicine 2021;26(1):8-8
		                        		
		                        			BACKGROUND:
		                        			Prenatal stress can cause neurobiological and behavioral defects in offspring; environmental factors play a crucial role in regulating the development of brain and behavioral; this study was designed to test and verify whether an enriched environment can repair learning and memory impairment in offspring rats induced by prenatal stress and to explore its mechanism involving the expression of insulin-like growth factor-2 (IGF-2) and activity-regulated cytoskeletal-associated protein (Arc) in the hippocampus of the offspring.
		                        		
		                        			METHODS:
		                        			Rats were selected to establish a chronic unpredictable mild stress (CUMS) model during pregnancy. Offspring were weaned on 21st day and housed under either standard or an enriched environment. The learning and memory ability were tested using Morris water maze and Y-maze. The expression of IGF-2 and Arc mRNA and protein were respectively measured by using RT-PCR and Western blotting.
		                        		
		                        			RESULTS:
		                        			There was an elevation in the plasma corticosterone level of rat model of maternal chronic stress during pregnancy. Maternal stress's offspring exposed to an enriched environment could decrease their plasma corticosterone level and improve their weight. The offspring of maternal stress during pregnancy exhibited abnormalities in Morris water maze and Y-maze, which were improved in an enriched environment. The expression of IGF-2, Arc mRNA, and protein in offspring of maternal stress during pregnancy was boosted and some relationships existed between these parameters after being exposed enriched environment.
		                        		
		                        			CONCLUSIONS
		                        			The learning and memory impairment in offspring of prenatal stress can be rectified by the enriched environment, the mechanism of which is related to the decreasing plasma corticosterone and increasing hippocampal IGF-2 and Arc of offspring rats following maternal chronic stress during pregnancy.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cytoskeletal Proteins/metabolism*
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			Hippocampus/metabolism*
		                        			;
		                        		
		                        			Insulin-Like Growth Factor II/metabolism*
		                        			;
		                        		
		                        			Learning
		                        			;
		                        		
		                        			Learning Disabilities/psychology*
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Memory Disorders/psychology*
		                        			;
		                        		
		                        			Nerve Tissue Proteins/metabolism*
		                        			;
		                        		
		                        			Pregnancy
		                        			;
		                        		
		                        			Prenatal Exposure Delayed Effects/psychology*
		                        			;
		                        		
		                        			Random Allocation
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Wistar
		                        			;
		                        		
		                        			Social Environment
		                        			;
		                        		
		                        			Stress, Psychological/genetics*
		                        			
		                        		
		                        	
8.Integrative molecular characterization of Chinese prostate cancer specimens.
Shi-Dong LV ; Hong-Yi WANG ; Xin-Pei YU ; Qi-Liang ZHAI ; Yao-Bin WU ; Qiang WEI ; Wen-Hua HUANG
Asian Journal of Andrology 2020;22(2):162-168
		                        		
		                        			
		                        			Prostate cancer (PCa) exhibits epidemiological and molecular heterogeneity. Despite extensive studies of its phenotypic and genetic properties in Western populations, its molecular basis is not clear in Chinese patients. To determine critical molecular characteristics and explore correlations between genomic markers and clinical parameters in Chinese populations, we applied an integrative genetic/transcriptomic assay that combines targeted next-generation sequencing and quantitative real-time PCR (qRT-PCR) on samples from 46 Chinese patients with PCa. Lysine (K)-specific methyltransferase 2D (KMT2D), zinc finger homeobox 3 (ZFHX3), A-kinase anchoring protein 9 (AKAP9), and GLI family zinc finger 1 (GLI1) were frequently mutated in our cohort. Moreover, a clinicopathological analysis showed that RB transcriptional corepressor 1 (RB1) deletion was common in patients with a high risk of disease progression. Remarkably, four genomic events, MYC proto-oncogene (MYC) amplification, RB1 deletion, APC regulator of WNT signaling pathway (APC) mutation or deletion, and cyclin-dependent kinase 12 (CDK12) mutation, were correlated with poor disease-free survival. In addition, a close link between KMT2D expression and the androgen receptor (AR) signaling pathway was observed both in our cohort and in The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) data. In summary, our results demonstrate the feasibility and benefits of integrative molecular characterization of PCa samples in disease pathology research and personalized medicine.
		                        		
		                        		
		                        		
		                        			A Kinase Anchor Proteins/genetics*
		                        			;
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Aged
		                        			;
		                        		
		                        			Biomarkers, Tumor/genetics*
		                        			;
		                        		
		                        			China
		                        			;
		                        		
		                        			Cytoskeletal Proteins/genetics*
		                        			;
		                        		
		                        			DNA-Binding Proteins/genetics*
		                        			;
		                        		
		                        			Gene Amplification
		                        			;
		                        		
		                        			High-Throughput Nucleotide Sequencing
		                        			;
		                        		
		                        			Homeodomain Proteins/genetics*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Middle Aged
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Neoplasm Proteins/genetics*
		                        			;
		                        		
		                        			Prostatic Neoplasms/pathology*
		                        			;
		                        		
		                        			Proto-Oncogene Mas
		                        			;
		                        		
		                        			Receptors, Androgen/genetics*
		                        			;
		                        		
		                        			Signal Transduction/genetics*
		                        			;
		                        		
		                        			Zinc Finger Protein GLI1/genetics*
		                        			
		                        		
		                        	
9.Ponatinib inhibits growth of patient-derived xenograft of cholangiocarcinoma expressing FGFR2-CCDC6 fusion protein in nude mice.
Tianyu WU ; Xiaoqing JIANG ; Bin XU ; Yu WANG
Journal of Southern Medical University 2020;40(10):1448-1456
		                        		
		                        			OBJECTIVE:
		                        			To investigate the antitumor effect of ponatinib on the growth of cholangiocarcinoma xenograft derived from a clinical patient in a mouse model expressing FGFR2-CCDC6 fusion protein.
		                        		
		                        			METHODS:
		                        			Lung metastatic tumor tissue was collected from a patient with advanced intrahepatic cholangiocarcinoma and implanted subcutaneously a NOD/SCID/ Il2rg-knockout (NSG) mouse. The tumor tissues were harvested and transplanted in nude mice to establish mouse models bearing patient-derived xenograft (PDX) of cholangiocarcinoma expressing FGFR2-CCDC6 fusion protein. The PDX mouse models were divided into 4 groups for treatment with citrate buffer (control group), intragastric administration of 20 mg/kg ponatinib dissolved in citrate buffer (ponatinib group), weekly intraperitoneal injections of 50 mg/kg gemcitabine and 2.5 mg/ kg cisplatin (gemcitabine group), or ponatinib combined with gemcitabine and cisplatin at the same doses (10 mice in each group, and 9 mice were evaluated in ponatinib group). The expressions of p-FGFR, p-FRS2, p-AKT, p-ERK, CD31, and Ki-67 in the xenografts were evaluated with immunohistochemistry, and cell apoptosis was analyzed with cleaved caspase-3 (CC3) staining and TUNEL staining. Western blotting was used to detect the expressions of FGFR2, p-FGFR, AKT, p-AKT, ERK, p-ERK, FRS2 and p-FRS2 in the tumor tissues.
		                        		
		                        			RESULTS:
		                        			Compared with those in the control group, the mice in ponatinib group showed a significantly reduced tumor volume (
		                        		
		                        			CONCLUSIONS
		                        			Ponatinib can regulate FGFR signaling to inhibit the proliferation and induce apoptosis of tumor cells in mice bearing patient-derived cholangiocarcinoma xenograft with FGFR2 fusion. FGFR inhibitor can serve as a treatment option for patients with cholangiocarcinoma with FGFR2 fusion.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Bile Duct Neoplasms/genetics*
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Cholangiocarcinoma/genetics*
		                        			;
		                        		
		                        			Cytoskeletal Proteins
		                        			;
		                        		
		                        			Heterografts
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Imidazoles
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred NOD
		                        			;
		                        		
		                        			Mice, Nude
		                        			;
		                        		
		                        			Mice, SCID
		                        			;
		                        		
		                        			Pyridazines
		                        			;
		                        		
		                        			Receptor, Fibroblast Growth Factor, Type 2
		                        			;
		                        		
		                        			Xenograft Model Antitumor Assays
		                        			
		                        		
		                        	
10.Analysis of MYOC gene variants among sporadic patients with primary open-angle glaucoma.
Xiaohuan ZHANG ; Dingding ZHANG ; Lulin HUANG ; Fang HAO ; Ying LIN ; Bo GONG ; Zhenglin YANG
Chinese Journal of Medical Genetics 2019;36(7):662-665
		                        		
		                        			OBJECTIVE:
		                        			To screen for MYOC gene variants among sporadic patients with primary open angle glaucoma (POAG).
		                        		
		                        			METHODS:
		                        			For 398 patients with POAG, Sanger sequencing was applied to detect potential variants of the MYOC gene.
		                        		
		                        			RESULTS:
		                        			Eight patients (2.0%) were found to harbor variations of the MYOC gene. These included five types of variants, among which c.667C>T (p.Pro223Ser) and c.1138G>T (p.Asp380Tyr) were novel. c.382C>T (p.Arg128Trp), c.1109C>T(p.Pro370Leu) and c.1130C>A (p.Thr377Lys) were previously associated with POAG. Alignment of amino acid sequences of MYOC proteins of various species revealed that the two novel variants have occurred at highly conserved positions. c.1138G>T was predicted to be possible pathogenic by Bioinformatic analysis.
		                        		
		                        			CONCLUSION
		                        			Two novel variants of the MYOC gene were detected among sporadic POAG patients, which enriched its variant spectrum.
		                        		
		                        		
		                        		
		                        			Cytoskeletal Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Eye Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Glaucoma, Open-Angle
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Glycoproteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Mutation
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail