1.Expression and Clinical Significance of Helper T Cells 9 and Its Sytokines Interleukin 9 in Chronic Lymphocytic Leukemia.
Tudahong SHABAAITI ; Nan-Nan PANG ; Alimu XIERENGULI ; Yiming NAZHAKAITI ; Sha GUO ; Ran-Ran ZHANG ; Shan GONG ; Jian-Hua QU
Journal of Experimental Hematology 2023;31(6):1663-1669
OBJECTIVE:
To investigate the expression and clinical significance of T helper cell 9 (Th9) and its cytokine interleukin 9(IL-9) in peripheral blood of patients with chronic lymphocytic leukemia(CLL).
METHODS:
A total of 43 newly diagnosed patients with chronic lymphocytic leukemia in the First Affiliated Hospital of Xinjiang Medical University from June 2021 to June 2022 were selected as the case group. The patients were divided into Binet A group (13 cases), Binet B group (20 cases) and Binet C group (10 cases) by Binet staging system, and 20 healthy volunteers who underwent physical examinationin in our hospital in the same period served as control group. The proportion of Th9 cells in peripheral blood was detected by flow cytometry, the expression level of Th9 specific transcription factors PU.1 and IRF4 was detected by Western blot, and the expression level of serum cytokine IL-9 was detected by ELISA. The proportion of Th9, the expression of PU.1, IRF4 and IL-9 in each group were compared, and the correlation between the proportion of Th9, IL-9 and clinicopathological indexes of CLL patients was analyzed.
RESULTS:
The proportion of Th9, the expression of PU.1, IRF4 and IL-9 in CLL group were significantly higher than those in control group (P<0.05), the proportion of Th9 and the expression of IL-9 in Binet B and C group were higher than those in Binet A group (P<0.05), but there was no significant difference in the proportion of Th9 cells between Binet B group and C group (P>0.05). The expression of IL-9 in Binet C group was significantly higher than that in Binet B group (P<0.05) . The proportion of Th9 cells and IL-9 were highly expression in patients with β2 microglobulin abnormality, IGHV unmutation, P53 abnormality and hepatosplenic lymph node enlargement(P<0.05), but not related to age and sex (P>0.05). The results of Spearman correlation analysis showed that the proportion of Th9 in patients with CLL was negatively correlated with the lymphocytic account and lymphocyte proportion(rs=-0.32,rs=-0.34). The proportion of Th9 and IL-9 were positively correlated with Binet stage, Rai stage and CLL-IPI Scoring (rs=0.79,rs=0.54,rs=0.58; rs=0.72,rs=0.63,rs=0.45), but not with WBC, CD4+ T cells and CD8+T cells (P>0.05). The proportion of Th9 was positively correlated with IL-9 (rs=0.53).
CONCLUSION
Th9 cells and IL-9 are abnormally highly expressed in CLL, which is related to the poor prognosis of CLL.
Humans
;
Leukemia, Lymphocytic, Chronic, B-Cell/genetics*
;
Interleukin-9
;
Clinical Relevance
;
T-Lymphocytes, Helper-Inducer/pathology*
;
Cytokines
2.Radix Tetrastigme Polysaccharide Promotes Antitumor Immune Response in Lewis Lung Cancer Mice.
Wenju ZHAO ; Yong ZHU ; Zhengxue LU
Chinese Journal of Lung Cancer 2023;26(8):559-571
BACKGROUND:
Lung cancer has a high incidence and mortality rate, but the treatment of lung cancer still lacks low toxicity and efficient anti-tumor drugs. Polysaccharide from radix tetrastigme has development value in anti-tumor treatment methods. This study was to observe the effect of polysaccharide from radix tetrastigme on immune response of Lewis lung cancer mice and explore its molecular mechanism.
METHODS:
Lewis lung cancer mouse models were established and randomly grouped. The spleen polypeptide group was intragastric with 50 mg/kg spleen polypeptide, and the radix tetrastigme polysaccharide low, medium and high dose groups were intragastric with 62.5, 125 and 250 mg/kg radix tetrastigme polysaccharide, respectively, and the model group and the control group were intragastric with equivolume normal saline. Tumor formation and metastasis were compared. Haematoxylin-eosin (HE) staining was used to observe the pathological changes of tumor cells. Macrophage phagocytosis, apoptosis, M1/M2 polarization, T cell subsets and cytokine levels in peripheral blood were detected by flow cytometry. The proliferation activity of macrophages was detected by methyl thiazolyldiphenyl tetrazolium (MTT) assay. Dendritic cell (DC) antigen presenting function was detected by chlorophenol red-β-D-galactopyranoside (CPRG) method. Tumor tissue differentiation antigen cluster 47 (CD47) mRNA and protein expression and macrophage signal regulatory protein α (SIRRP α) expression were detected by real time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB).
RESULTS:
The tumor inhibition rates and anti-metastasis rates in the 3-dose radix tetrastigme polysaccharide group and the spleen polypeptide group were higher than those in the model group, and the pathological injury of tumor tissue were severer, and the positive rate of phagocytosis of ink by macrophages and the efficiency of phagocytosis of tumor cells were increased; the apoptosis rate of macrophages was decreased; the proliferation activity of macrophages, polarization ratio of macrophages to M1 type, DC antigen presenting ability, CD4+, CD4+/CD8+ levels were increased; the level of serum tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and the expression of tumor tissue CD47, macrophage SH2-containing protein tyrosine phosphatase 1 (SHP-1), SH2-containing protein tyrosine phosphatase 2 (SHP-2), and phosphorylation signal regulatory protein α (p-SIRPα) were decreased, and the differences were statistically significant (P<0.05). There were no significant differences in the above indexes between low-dose radix tetrastigme polysaccharide group and spleen polypeptide group (P>0.05), and the effects of radix tetrastigme polysaccharide were dose-dependent.
CONCLUSIONS
Radix tetrastigme polysaccharide can inhibit tumor growth, metastasis and immune response in Lewis lung cancer mice, and its mechanism may be related to inhibiting SIRP/CD47 signaling pathway.
Mice
;
Animals
;
CD47 Antigen/genetics*
;
Lung Neoplasms/drug therapy*
;
Cytokines/genetics*
;
Polysaccharides/pharmacology*
;
Immunity
;
Protein Tyrosine Phosphatases
3.Inhibitory Effect of Cinobufotalin on Macrophage Inflammatory Factor Storm and Its Mechanism.
Xi-Xi LIU ; Chen-Cheng LI ; Jing YANG ; Wei-Guang ZHANG ; Re-Ai-La JIANATI ; Xiao-Li ZHANG ; Zu-Qiong XU ; Xing-Bin DAI ; Fang TIAN ; Bi-Qing CHEN ; Xue-Jun ZHU
Journal of Experimental Hematology 2023;31(3):880-888
OBJECTIVE:
To investigate the inflammatory effects of Cinobufotalin on monocytes in resting state and macrophages in activated state and its molecular mechanism.
METHODS:
THP-1 cells were stimulated with Phorbol 12-myristate 13-acetate to induce differentiation into macrophages. Lipopolysaccharides was added to activate macrophages in order to establish macrophage activation model. Cinobufotalin was added to the inflammatory cell model for 24 h as a treatment. CCK-8 was used to detect cell proliferation, Annexin V /PI double staining flow cytometry was used to detect cell apoptosis, flow cytometry was used to detect macrophage activation, and cytometric bead array was used to detect cytokines. Transcriptome sequencing was used to explore the gene expression profile regulated by Cinobufotalin. Changes in the significantly regulated molecules were verified by real-time quantitative polymerase chain reaction and Western blot.
RESULTS:
1∶25 concentration of Cinobufotalin significantly inhibited the proliferation of resting monocytes(P<0.01), and induced apoptosis(P<0.01), especially the activated macrophages(P<0.001, P<0.001). Cinobufotalin significantly inhibited the activation of macrophages, and significantly down-regulated the inflammatory cytokines(IL-6, TNF-α, IL-1β, IL-8) released by activated macrophages(P<0.001). Its mechanism was achieved by inhibiting TLR4/MYD88/P-IκBa signaling pathway.
CONCLUSION
Cinobufotalin can inhibit the inflammatory factors produced by the over-activation of macrophages through TLR4/MYD88/P-IκBa pathway, which is expected to be applied to the treatment and research of diseases related to the over-release of inflammatory factors.
Humans
;
Toll-Like Receptor 4/metabolism*
;
Myeloid Differentiation Factor 88/genetics*
;
Macrophages/metabolism*
;
Cytokines/metabolism*
;
Lipopolysaccharides/pharmacology*
;
NF-kappa B
4.Role of ceRNA network in inflammatory cells of rheumatoid arthritis.
Xiaoyu HE ; Haohua HE ; Yan ZHANG ; Tianyu WU ; Yongjie CHEN ; Chengzhi TANG ; Tian XIA ; Xiaonan ZHANG ; Changhao XIE
Journal of Central South University(Medical Sciences) 2023;48(5):750-759
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease caused by inflammatory cells. Various inflammatory cells involved in RA include fibroblast-like synoviocytes, macrophages, CD4+T-lymphocytes, B lymphocytes, osteoclasts and chondrocytes. The close interaction between various inflammatory cells leads to imbalance of immune response and disorder of the expression of mRNA in inflammatory cells. It helps to drive production of pro-inflammatory cytokines and stimulate specific antigen-specific T- and B-lymphocytes to produce autoantibodies which is an important pathogenic factor for RA. Competing endogenous RNA (ceRNA) can regulate the expression of mRNA by competitively binding to miRNA. The related ceRNA network is a new regulatory mechanism for RNA interaction. It has been found to be involved in the regulation of abnormal biological processes such as proliferation, apoptosis, invasion and release of inflammatory factors of RA inflammatory cells. Understanding the ceRNA network in 6 kinds of RA common inflammatory cells provides a new idea for further elucidating the pathogenesis of RA, and provides a theoretical basis for the discovery of new biomarkers and effective therapeutic targets.
Humans
;
Arthritis, Rheumatoid/genetics*
;
MicroRNAs/metabolism*
;
Synoviocytes/pathology*
;
Cytokines/metabolism*
;
RNA, Messenger/metabolism*
;
Fibroblasts/pathology*
;
Cell Proliferation
5.Effects of Foxp3 gene silencing on the expression of inflammatory cytokines and the proliferation and migration of human periodontal ligament fibroblasts in an inflammatory environment.
Ting LU ; Jiahao ZHU ; Shihe YANG ; Zhe SHEN ; Liangjun ZHONG
West China Journal of Stomatology 2023;41(3):269-275
OBJECTIVES:
This study aimed to clarify the effects of Foxp3 silencing on the expression of inflammatory cytokines in human periodontal ligament cells (hPDLFs) in an inflammatory environment and on cell proliferation and invasiveness, as well as to explore the role of Foxp3 gene in the development of periodontitis.
METHODS:
An small interfering RNA (siRNA) construct specific for Foxp3 was transfected into hPDLFs. Foxp3 silencing efficiency was verified by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, and the siRNA with the optimum silencing effect of Foxp3 gene was screened. Using lipopolysaccharide to simulate an inflammatory environment in vitro, CCK-8 detected the effect of silencing Foxp3 on hPDLFs proliferation under inflammatory conditions. Wound-healing experiments and transwell assays were conducted to detect the effect of silencing Foxp3 on hPDLF migration under inflammatory conditions. The expression of the inflammatory cytokines interleukin (IL)-6 and IL-8 was detected by RT-PCR and Western blotting under inflammatory conditions.
RESULTS:
After siRNA transfection, RT-PCR and Western blotting analyses showed that the expression of Foxp3 mRNA in the Foxp3-si3 group decreased significantly (t=21.03, P<0.000 1), and the protein expression of Foxp3 also decreased significantly (t=12.8, P<0.001). In the inflammatory environment, Foxp3 gene silencing had no significant effect on hPDLFs proliferation (P>0.05), and Foxp3 gene silencing promoted hPDLFs migration (P<0.05). Moreover, the expression of IL-6 and IL-8 increased (P<0.05).
CONCLUSIONS
In an inflammatory environment, Foxp3 gene silencing promoted hPDLFs migration but had no significant effect on hPDLFs proliferation. The expression of inflammatory factors expressed in hPDLFs increased after Foxp3 gene silencing, indicating that Foxp3 gene inhibited inflammation in periodontitis.
Humans
;
Cell Proliferation/genetics*
;
Cells, Cultured
;
Cytokines/metabolism*
;
Fibroblasts/metabolism*
;
Forkhead Transcription Factors/metabolism*
;
Gene Silencing
;
Interleukin-6/metabolism*
;
Interleukin-8/metabolism*
;
Periodontal Ligament/metabolism*
;
Periodontitis/metabolism*
;
RNA, Small Interfering/metabolism*
;
Transcription Factors/metabolism*
6.Characterization of the cellular immune response induced by Mycobacterium tuberculosis Rv2626c.
Guo LI ; Hong FU ; Yunfei GAO ; Youwei FENG ; Jing LI ; Chao CHEN ; Dan ZHONG ; Xiang CHEN ; Yuelan YIN ; Xin'an JIAO
Chinese Journal of Biotechnology 2023;39(7):2644-2655
Nearly a quarter of the world's population is infected with Mycobacterium tuberculosis and remains long-term asymptomatic infection. Rv2626c is a latent infection-related protein regulated by DosR of M. tuberculosis. In this study, the Rv2626c protein was prokaryotically expressed and purified, and its immunobiological characteristics were analyzed using RAW264.7 cells and mice as infection models. SDS-PAGE and Western blotting analysis showed that the Rv2626c-His fusion protein was mainly expressed in soluble form and specifically reacted with the rabbit anti-H37RV polyclonal serum. In addition, we found that the Rv2626c protein bound to the surface of RAW264.7 macrophages and up-regulated the production of NO. Moreover, the Rv2626c protein significantly induced the production of pro-inflammatory cytokines IFN-γ, TNF-α, IL-6 and MCP-1, and induced strong Th1-tendency immune response. These results may help to reveal the pathogenic mechanism of M. tuberculosis and facilitate the development of new tuberculosis vaccine.
Animals
;
Mice
;
Rabbits
;
Mycobacterium tuberculosis/genetics*
;
Tuberculosis
;
Antigens, Bacterial
;
Cytokines
;
Immunity, Cellular
7.Terpinen-4-ol inhibits proliferation of VSMCs exposed to high glucose via regulating KLF4/NF-κB signaling pathway.
Li HE ; Lin ZHANG ; Ju ZHANG ; Hong JIANG ; Yong-Xiang HE ; Dong-Guo LENG ; Ying-Xin GONG ; Ding YANG ; Yan SONG ; Chuan-Yin XIONG ; Yan-Yan ZHANG
China Journal of Chinese Materia Medica 2023;48(9):2530-2537
This study aimed to observe the effect of terpinen-4-ol(T4O) on the proliferation of vascular smooth muscle cells(VSMCs) exposed to high glucose(HG) and reveal the mechanism via the Krüppel-like factor 4(KLF4)/nuclear factor kappaB(NF-κB) signaling pathway. The VSMCs were first incubated with T4O for 2 h and then cultured with HG for 48 h to establish the model of inflammatory injury. The proliferation, cell cycle, and migration rate of VSMCs were examined by MTT method, flow cytometry, and wound healing assay, respectively. The content of inflammatory cytokines including interleukin(IL)-6 and tumor necrosis factor-alpha(TNF-α) in the supernatant of VSMCs was measured by enzyme-linked immunosorbent assay(ELISA). Western blot was employed to determine the protein levels of proliferating cell nuclear antigen(PCNA), Cyclin D1, KLF4, NF-κB p-p65/NF-κB p65, IL-1β, and IL-18. The KLF4 expression in VSMCs was silenced by the siRNA technology, and then the effects of T4O on the cell cycle and protein expression of the HG-induced VSMCs were observed. The results showed that different doses of T4O inhibited the HG-induced proliferation and migration of VSMCs, increased the percentage of cells in G_1 phase, and decreased the percentage of cells in S phase, and down-regulated the protein levels of PCNA and Cyclin D1. In addition, T4O reduced the HG-induced secretion and release of the inflammatory cytokines IL-6 and TNF-α and down-regulated the expression of KLF4, NF-κB p-p65/NF-κB p65, IL-1β, and IL-18. Compared with si-NC+HG, siKLF4+HG increased the percentage of cells in G_1 phase, decreased the percentage of cells in S phase, down-regulated the expression of PCNA, Cyclin D1, and KLF4, and inhibited the activation of NF-κB signaling pathway. Notably, the combination of silencing KLF4 with T4O treatment further promoted the changes in the above indicators. The results indicate that T4O may inhibit the HG-induced proliferation and migration of VSMCs by down-regulating the level of KLF4 and inhibiting the activation of NF-κB signaling pathway.
NF-kappa B/metabolism*
;
Interleukin-18/metabolism*
;
Proliferating Cell Nuclear Antigen/genetics*
;
Cyclin D1/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Muscle, Smooth, Vascular
;
Cell Proliferation
;
Signal Transduction
;
Cytokines/metabolism*
;
Glucose/metabolism*
8.Alcohol extract of root and root bark of Toddalia asiatica alleviates CIA in rats through anti-inflammatory and proapoptotic effects.
Zong-Xing ZHANG ; Lu JIANG ; Dao-Zhong LIU ; Bo-Nan TAO ; Zi-Ming HOU ; Meng-Jie TIAN ; Jia FENG ; Lin YUAN
China Journal of Chinese Materia Medica 2023;48(8):2203-2211
This study aims to investigate the therapeutic effect of alcohol extract of root and root bark of Toddalia asiatica(TAAE) on collagen-induced arthritis(CIA) in rats through phosphatidylinoinosidine-3 kinase/protein kinase B(PI3K/Akt) signaling pathway. To be specific, CIA was induced in rats, and then the rats were treated(oral, daily) with TAAE and Tripterygium Glycoside Tablets(TGT), respectively. The swelling degree of the hind leg joints was scored weekly. After 35 days of administration, the histopathological changes were observed based on hematoxylin and eosin(HE) staining. Enzyme-linked immunosorbent assay(ELISA) was employed to detect the levels of cytokines [tumor necrosis factor-α(TNF-α), interleukin(IL)-6)]. Terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) staining was performed to detect the apoptosis of synoviocytes in rats. Western blot was used to detect the expression levels of apoptosis-related proteins B-cell lymphoma 2(Bcl-2)-associated X(Bax), Bcl-2, and caspase-3 and pathway-related proteins phosphoinositide 3-kinase(PI3K), phosphorylated(p)-PI3K, protein kinase B(Akt), and p-Akt. RT-qPCR was conducted to examine the mRNA levels of Bax, Bcl-2, caspase-3, TNF-α, IL-6, and IL-1β and pathway-related proteins PI3K, p-PI3K, Akt, and p-Akt. TAAE can alleviate the joint swelling in CIA rats, reduce serum levels of inflammatory cytokines, improve synovial histopathological changes, promote apoptosis of synoviocytes, and inhibit synovial inflammation. In addition, RT-qPCR and Western blot results showed that TAAE up-regulated the level of Bax, down-regulated the level of Bcl-2, and activated caspase-3 to promote apoptosis in synoviocytes. TAAE effectively down-regulated the protein levels of p-PI3K and p-Akt. In this study, TAAE shows therapeutic effect on CIA in rats and reduces the inflammation. The mechanism is that it suppresses PI3K/Akt signaling pathway and promotes synoviocyte apoptosis. Overall, this study provides a new clue for the research on the anti-inflammatory mechanism of TAAE and lays a theoretical basis for the better clinical application of TAAE in the treatment of inflammatory and autoimmune diseases.
Rats
;
Animals
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Caspase 3/genetics*
;
Tumor Necrosis Factor-alpha/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
Plant Bark
;
Anti-Inflammatory Agents/therapeutic use*
;
Arthritis, Experimental/chemically induced*
;
Inflammation/drug therapy*
;
Cytokines/metabolism*
;
Proto-Oncogene Proteins c-bcl-2
;
Apoptosis
9.Physicochemical properties and anti-inflammatory and immunomodulatory effects of Shengfupian polysaccharides.
Qi HU ; Yu LIU ; Li HAN ; Yu-Sen HOU ; Chen-Juan ZENG ; Fu-Neng GENG ; Ming YANG ; Ya-Nan HE ; Ding-Kun ZHANG
China Journal of Chinese Materia Medica 2023;48(10):2757-2766
In this study, the crude polysaccharides was extracted from Shengfupian and purified by Sevag deproteinization. Then, the purified neutral polysaccharide fragment was obtained by the DEAE-52 cellulose chromatography column and Sephadex G-100 co-lumn. The structure of polysaccharides was characterized by ultraviolet spectroscopy, infrared spectroscopy, ion chromatography, and gel permeation chromatography. To investigate the anti-inflammatory activity of Shengfupian polysaccharides, LPS was used to induce inflammation in RAW264.7 cells. The expression of the CD86 antibody on surface of M1 cells, the function of macrophages, and the content of NO and IL-6 in the supernatant were examined. An immunodepression model of H22 tumor-bearing mice was established, and the immunomodulatory activity of Shengfupian polysaccharides was evaluated based on the tumor inhibition rate, immune organ index and function, and serum cytokine levels. Research indicated that Shengfupian polysaccharides(80 251 Da) was composed of arabinose, galactose, glucose, and fructose with molar ratio of 0.004∶0.018∶0.913∶0.065. It was smooth and lumpy under the scanning electron microscope. In the concentration range of 25-200 μg·mL~(-1), Shengfupian polysaccharides exhibited little or no toxicity to RAW264.7 cells and could inhibit the polarization of cells to the M1 type and reduce the content of NO and IL-6 in the cell supernatant. It could suppress the phagocytosis of cells at the concentration of 25 μg·mL~(-1), while enhancing the phagocytosis of RAW264.7 cells within the concentration range of 100-200 μg·mL~(-1). The 200 mg·kg~(-1) Shengfupian polysaccharides could alleviate the spleen injury caused by cyclophosphamide, increase the levels of IL-1β and IL-6, and decrease the level of TNF-α in the serum of mice. In conclusion, Shengfupian polysaccharides has anti-inflammatory effect and weak immunomodulatory effect, which may the material basis of Aconm Lateralis Radix Praeparaia for dispelling cold and relieving pain.
Animals
;
Mice
;
Interleukin-6/genetics*
;
Cytokines/metabolism*
;
Polysaccharides/chemistry*
;
RAW 264.7 Cells
;
Anti-Inflammatory Agents/chemistry*
;
Spectrophotometry, Infrared
10.Immune regulation mechanism of Saposhnikoviae Radix polysaccharide based on zebrafish model.
Meng SUN ; Wen-di WANG ; Yan LI ; Ke-Chun LIU ; Qing XIA ; Yan-Yan JIANG ; Bin LIU
China Journal of Chinese Materia Medica 2023;48(7):1916-1926
The immunomodulatory effect of Saposhnikoviae Radix polysaccharide(SRP) was evaluated based on the zebrafish mo-del, and its mechanism was explored by transcriptome sequencing and real-time fluorescence-based quantitative PCR(RT-qPCR). The immune-compromised model was induced by navelbine in the immunofluorescence-labeled transgenic zebrafish Tg(lyz: DsRed), and the effect of SRP on the density and distribution of macrophages in zebrafish was evaluated. The effect of SRP on the numbers of macrophages and neutrophils in wild-type AB zebrafish was detected by neutral red and Sudan black B staining. The content of NO in zebrafish was detected by DAF-FM DA fluorescence probe. The content of IL-1β and IL-6 in zebrafish was detected by ELISA. The differentially expressed genes(DEGs) of zebrafish in the blank control group, the model group, and the SRP treatment group were analyzed by transcriptome sequencing. The immune regulation mechanism was analyzed by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment, and the expression levels of key genes were verified by RT-qPCR. The results showed that SRP could significantly increase the density of immune cells in zebrafish, increase the number of macrophages and neutrophils, and reduce the content of NO, IL-1β, and IL-6 in immune-compromised zebrafish. The results of transcriptome sequencing analysis showed that SRP could affect the expression level of immune-related genes on Toll-like receptor pathway and herpes simplex infection pathway to affect the release of downstream cytokines and interferon, thereby completing the activation process of T cells and playing a role in regulating the immune activity of the body.
Animals
;
Zebrafish/genetics*
;
Interleukin-6/genetics*
;
Gene Expression Profiling
;
Cytokines/genetics*
;
Macrophages
;
Transcriptome

Result Analysis
Print
Save
E-mail