1.Multi-omics analysis of regulating effects of hyperoside on lipid metabolism in high-fat diet mice.
Ya-Ting JIAO ; Wen-Shu ZHANG ; Shan-Shan PAN ; Ming-Jie XIE
Acta Physiologica Sinica 2022;74(6):970-978
The aim of this study was to explore the regulating effects of hyperoside (Hyp) on lipid metabolism in high-fat diet mice. The high-fat diet mouse model was established by high-fat diet induction. After 5 weeks of Hyp intragastric administration in high-fat diet mice, the serum lipid levels before and after Hyp administration were measured by the corresponding kits. The tissue structure of mouse liver was observed by HE staining before and after Hyp administration. The changes of intestinal flora and transcriptome were measured by Illumina platforms. Liquid chromatography-mass spectrometry (LC-MS) was used to determine non-targeted metabolites. The results showed that Hyp significantly reduced lipid levels in the high-fat diet mice and effectively restored the external morphology and internal structure of liver tissue. Hyp changed the species composition of the intestinal flora in high-fat diet mice, increased the abundance of beneficial flora such as Ruminococcus, and decreased the abundance of harmful flora such as Sutterella. Combined multi-omics analysis revealed that the effect of retinoic acid on lipid metabolism was significant in the high-fat diet mice treated with Hyp, while the increase of retinoic acid content was significantly negatively correlated with the expression of genes such as cyp1a2 and ugt1a6b, positively correlated with AF12 abundance, and significantly negatively correlated with unidentified_Desulfovibrionaceae abundance. These results suggest that Hyp may modulate the abundance of AF12, unidentified_Desulfovibrionaceae and inhibit the expression of genes such as cyp1a2 and ugt1a6b, thus increasing the content of retinoic acid and regulating lipid metabolism in the high-fat diet mice.
Animals
;
Mice
;
Diet, High-Fat/adverse effects*
;
Lipid Metabolism
;
Cytochrome P-450 CYP1A2/pharmacology*
;
Multiomics
;
Liver
;
Lipids/pharmacology*
;
Tretinoin/pharmacology*
;
Mice, Inbred C57BL
2.Schisandra chinensis Oil Attenuates Aristolochic Acid I-Induced Nephrotoxicity in vivo and in vitro.
Yan YANG ; Fei-Lin GE ; Xiao-Yan ZHAN ; Wen-Qing MU ; Zhi-Yong LI ; Li LIN ; Zi-Ying WEI ; Zhao-Fang BAI ; Qin SUN ; Xiao-He XIAO
Chinese journal of integrative medicine 2022;28(7):603-611
OBJECTIVE:
To investigate the protective effects of Schisandra chinensis oil (SCEO) against aristolochic acid I (AA I)-induced nephrotoxicity in vivo and in vitro and elucidate the underlying mechanism.
METHODS:
C57BL/6 mice were randomly divided into 5 groups according to a random number table, including control group, AA I group, and AA I +SCEO (0.25, 0.5 and 1 g/kg) groups (n=5 per group). Pretreatment with SCEO was done for 2 days by oral administration, while the control and AA I groups were treated with sodium carboxymethyl cellulose. Mice of all groups except for the control group were injected intraperitoneally with AA I (5 mg/kg) from day 3 until day 7. Histopathological examination and apoptosis of kidney tissue were observed by hematoxylin and eosin and TdT-mediated dUTP nick-end labeling (TUNEL) staining, respectively. The levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and serum creatinine (SCr), as well as renal malondialdehyde (MDA), glutathione, r-glutamyl cysteingl+glycine (GSH), and superoxide dismutase (SOD) were analyzed using enzyme-linked immunosorbent assay (ELISA). Expressions of hepatic cytochrome P450 1A1 (CYP1A1), CYP1A2, and nad(p)hquinonedehydrogenase1 (NQO1) were analyzed using ELISA, quantitative real-time polymerase chain reaction (qPCR) and Western blot, respectively. In vitro, SCEO (40 µ g/mL) was added 12 h before treatment with AA I (40 µ mol/mL for 48 h) in human renal proximal tubule cell line (HK-2), then apoptosis and reactive oxygen species (ROS) were analyzed by flow cytometry.
RESULTS:
SCEO 0.5 and 1 g/kg ameliorated histopathological changes and TUNEL+ staining in the kidney tissues of mice with AA I-induced nephrotoxicity, and reduced serum levels of ALT, AST, BUN and SCr (P<0.01 or P<0.05). SCEO 0.5 and 1 g/kg alleviated the ROS generation in kidney, containing MDA, GSH and SOD (P<0.01 or P<0.05). SCEO 1 g/kg increased the expressions of CYP1A1 and CYP1A2 and decreased NQO1 level in the liver tissues (P<0.01 or P<0.05). Besides, in vitro studies also demonstrated that SCEO 40 µ g/mL inhibited apoptosis and ROS generation (P<0.05 or P<0.01).
CONCLUSIONS
SCEO can alleviate AA I-induced kidney damage both in vivo and in vitro. The protective mechanism may be closely related to the regulation of metabolic enzymes, thereby inhibiting apoptosis and ROS production.
Animals
;
Apoptosis
;
Aristolochic Acids/toxicity*
;
Cytochrome P-450 CYP1A1/metabolism*
;
Cytochrome P-450 CYP1A2/metabolism*
;
Glutathione/metabolism*
;
Kidney/drug effects*
;
Kidney Diseases/drug therapy*
;
Mice
;
Mice, Inbred C57BL
;
Oxidative Stress
;
Plant Oils/therapeutic use*
;
Protective Agents/therapeutic use*
;
Reactive Oxygen Species/metabolism*
;
Schisandra
;
Superoxide Dismutase/metabolism*
3.Effects of Gukang Capsules on activity and protein expression of hepatic cytochrome P450 enzymes in rats.
Chang YANG ; Jing LI ; Jia SUN ; Ding-Yan LU ; Shuai-Shuai CHEN ; Yong-Jun LI ; Yong-Lin WANG ; Ting LIU
China Journal of Chinese Materia Medica 2022;47(21):5936-5943
Gukang Capsules are often used in combination with drugs to treat fractures, osteoarthritis, and osteoporosis. Cytochrome P450(CYP450) mainly exists in the liver and participates in the oxidative metabolism of a variety of endogenous and exogenous substances and serves as an important cause of drug-metabolic interactions and adverse reactions. Therefore, it is of great significance to study the effect of Gukang Capsules on the activity and expression of CYP450 for increasing its clinical rational medication and improving the safety of drug combination. In this study, the Cocktail probe method was used to detect the changes in the activities of CYP1A2, CYP3A2, CYP2C11, CYP2C19, CYP2D4, and CYP2E1 in rat liver after treatment with high-, medium-and low-dose Gukang Capsules. The rat liver microsomes were extracted by the calcium chloride method, and protein expression of the above six CYP isoform enzymes was detected by Western blot. The results showed that the low-dose Gukang Capsules could induce CYP3A2 and CYP2D4 in rats, medium-dose Gukang Capsules had no effect on them, and high-dose Gukang Capsules could inhibit them in rats. The high-dose Gukang Capsules did not affect CYP2C11 in rats, but low-and medium-dose Gukang Capsules could induce CYP2C11 in rats. Gukang Capsules could inhibit CYP2C19 in rats and induce CYP1A2 in a dose-independent manner, but did not affect CYP2E1. If Gukang Capsules were co-administered with CYP1A2, CYP2C19, CYP3A2, CYP2C11, and CYP2D4 substrates, the dose should be adjusted to avoid drug interactions.
Rats
;
Animals
;
Cytochrome P-450 CYP1A2/metabolism*
;
Cytochrome P-450 CYP2C19
;
Cytochrome P-450 CYP2E1/pharmacology*
;
Rats, Sprague-Dawley
;
Cytochrome P-450 Enzyme System/metabolism*
;
Microsomes, Liver
;
Liver
;
Cytochrome P-450 CYP3A/metabolism*
4.The metabolism and hepatotoxicity of ginkgolic acid (17 : 1) in vitro.
Qing-Qing YAO ; Li LI ; Ming-Cheng XU ; Hai-Hong HU ; Hui ZHOU ; Lu-Shan YU ; Su ZENG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(11):829-837
Pharmacological activities and adverse side effects of ginkgolic acids (GAs), major components in extracts from the leaves and seed coats of Ginkgo biloba L, have been intensively studied. However, there are few reports on their hepatotoxicity. In the present study, the metabolism and hepatotoxicity of GA (17 : 1), one of the most abundant components of GAs, were investigated. Kinetic analysis indicated that human and rat liver microsomes shared similar metabolic characteristics of GA (17 : 1) in phase I and II metabolisms. The drug-metabolizing enzymes involved in GA (17 : 1) metabolism were human CYP1A2, CYP3A4, UGT1A6, UGT1A9, and UGT2B15, which were confirmed with an inhibition study of human liver microsomes and recombinant enzymes. The MTT assays indicated that the cytotoxicity of GA (17 : 1) in HepG2 cells occurred in a time- and dose-dependent manner. Further investigation showed that GA (17 : 1) had less cytotoxicity in primary rat hepatocytes than in HepG2 cells and that the toxicity was enhanced through CYP1A- and CYP3A-mediated metabolism.
Animals
;
Cells, Cultured
;
Cytochrome P-450 CYP1A2
;
metabolism
;
Cytochrome P-450 CYP3A
;
metabolism
;
Ginkgo biloba
;
chemistry
;
Glucuronosyltransferase
;
metabolism
;
Hepatocytes
;
chemistry
;
drug effects
;
enzymology
;
metabolism
;
Humans
;
Kinetics
;
Liver
;
chemistry
;
drug effects
;
enzymology
;
metabolism
;
Microsomes, Liver
;
chemistry
;
drug effects
;
enzymology
;
metabolism
;
Plant Extracts
;
chemistry
;
metabolism
;
toxicity
;
Rats
;
Rats, Sprague-Dawley
;
Salicylates
;
chemistry
;
metabolism
;
toxicity
5.Effects of Dendrobium huoshanense on expressions and activities of hepatic microsomal cytochrome P450s in mice.
Chang-Suo WANG ; Kai WANG ; Xin MENG ; Zhen OUYANG ; Jun DAI ; Nai-Fu CHEN ; Bang-Xing HAN ; Yuan WEI
China Journal of Chinese Materia Medica 2018;43(21):4323-4329
This study was carried out to investigate the effect of oral administration of Dendrobium huoshanense on the expressions and activities of hepatic microsomal cytochrome P450s in mice, and to provide a reference for the evaluation of drug-drug interactions between D. huoshanense and clinical drugs. The C57BL/6 mice were randomly divided into blank control group, D. huoshanense low dose group (crude drug 1.25 g·kg⁻¹), D. huoshanense high dose group (crude drug 7.5 g·kg⁻¹), and phenobarbital positive control group (0.08 g·kg⁻¹). Each group was intragastrically administered with drugs for 2 weeks. The mice were sacrificed and their liver microsomes were prepared. The expressions of major subtypes of P450 enzyme were determined by Western blot and the probe drugs were used to detect the enzyme activities of P450 subtypes with protein expression changes. Western blot analysis showed that the protein expressions of CYP1A1, CYP1A2 and CYP2B in liver tissues were up-regulated in D. huoshanense-treated group. In vitro enzyme activity tests showed that there were no significant difference in metabolism of 7-ethoxyresorufin (a probe drug for CYP1A1) and bupropion (a probe drug for CYP2B) between D. huoshanense group and control group. The metabolism of phenacetin (a probe drug for CYP1A2) showed a statistical difference in rate Vmax, and it was significantly increased by approximately 20% in D. huoshanense group as compared with the blank control group, and the clearance CLint in treated group was also increased by about 32%. Therefore, oral administration of D. huoshanense had no effects on the activities of most hepatic P450 enzymes in mice, with no drug-drug interaction related to the P450 enzyme system in most clinical drugs theoretically. However, oral administration of D. huoshanense may accelerate the metabolism of CYP1A2-catalyzed drugs, which needs to be considered in clinical practice.
Animals
;
Cytochrome P-450 CYP1A1
;
metabolism
;
Cytochrome P-450 CYP1A2
;
metabolism
;
Cytochrome P-450 Enzyme System
;
metabolism
;
Dendrobium
;
chemistry
;
Drugs, Chinese Herbal
;
pharmacology
;
Mice
;
Mice, Inbred C57BL
;
Microsomes, Liver
;
drug effects
;
enzymology
;
Random Allocation
6.Ginsenoside Rb1 Inhibits Doxorubicin-Triggered H9C2 Cell Apoptosis via Aryl Hydrocarbon Receptor.
Yaxin ZHANG ; Yuguang WANG ; Zengchun MA ; Qiande LIANG ; Xianglin TANG ; Hongling TAN ; Chengrong XIAO ; Yue GAO
Biomolecules & Therapeutics 2017;25(2):202-212
Doxorubicin (DOX) is a highly effective chemotherapeutic agent; however, the dose-dependent cardiotoxicity associated with DOX significantly limits its clinical application. In the present study, we investigated whether Rb1 could prevent DOX-induced apoptosis in H9C2 cells via aryl hydrocarbon receptor (AhR). H9C2 cells were treated with various concentrations (−μM) of Rb1. AhR, CYP1A protein and mRNA expression were quantified with Western blot and real-time PCR analyses. We also evaluated the expression levels of caspase-3 to assess the anti-apoptotic effects of Rb1. Our results showed that Rb1 attenuated DOX-induced cardiomyocytes injury and apoptosis and reduced caspase-3 and caspase-8, but not caspase-9 activity in DOX-treated H9C2 cells. Meanwhile, pre-treatment with Rb1 decreased the expression of caspase-3 and PARP in the protein levels, with no effects on cytochrome c, Bax, and Bcl-2 in DOX-stimulated cells. Rb1 markedly decreased the CYP1A1 and CYP1A2 expression induced by DOX. Furthermore, transfection with AhR siRNA or pre-treatment with AhR antagonist CH-223191 significantly inhibited the ability of Rb1 to decrease the induction of CYP1A, as well as caspase-3 protein levels following stimulation with DOX. In conclusion, these findings indicate that AhR plays an important role in the protection of Ginsenoside Rb1 against DOX-triggered apoptosis of H9C2 cells.
Apoptosis*
;
Blotting, Western
;
Cardiotoxicity
;
Caspase 3
;
Caspase 8
;
Caspase 9
;
Cytochrome P-450 CYP1A1
;
Cytochrome P-450 CYP1A2
;
Cytochromes c
;
Doxorubicin
;
Myocytes, Cardiac
;
Real-Time Polymerase Chain Reaction
;
Receptors, Aryl Hydrocarbon*
;
RNA, Messenger
;
RNA, Small Interfering
;
Transfection
7.Functional Comparison of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells as Sources of Hepatocyte-Like Cells.
Jaemin JEONG ; Kyu Nam KIM ; Min Sung CHUNG ; Han Joon KIM
Tissue Engineering and Regenerative Medicine 2016;13(6):740-749
Pluripotent stem cells can differentiate into many cell types including mature hepatocytes, and can be used in the development of new drugs, treatment of diseases, and in basic research. In this study, we established a protocol leading to efficient hepatic differentiation, and compared the capacity to differentiate into the hepatocyte lineage of human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Optimal combinations of cytokines and growth factors were added to embryoid bodies produced by both types of cell. Differentiation of the cells was assessed with optical and electron microscopes, and hepatic-specific transcripts and proteins were detected by quantitative reverse transcription polymerase chain reaction and immunocytochemistry, respectively. Both types of embryoid body produced polygonal hepatocyte-like cells accompanied by time-dependent up regulation of genes for α-fetoprotein, albumin (ALB), asialoglycoprotein1, CK8, CK18, CK19, CYP1A2, and CYP3A4, which are expressed in fetal and adult hepatocytes. Both types of cell displayed functions characteristic of mature hepatocytes such as accumulation of glycogen, secretion of ALB, and uptake of indocyanine green. And these cells are transplanted into mouse model. Our findings indicate that hESCs and hiPSCs have similar abilities to differentiate into hepatocyte in vitro using the protocol developed here, and these cells are transplantable into damaged liver.
Adult
;
Animals
;
Cytochrome P-450 CYP1A2
;
Cytochrome P-450 CYP3A
;
Cytokines
;
Embryoid Bodies
;
Glycogen
;
Hepatocytes
;
Human Embryonic Stem Cells*
;
Humans*
;
Immunohistochemistry
;
In Vitro Techniques
;
Indocyanine Green
;
Induced Pluripotent Stem Cells*
;
Intercellular Signaling Peptides and Proteins
;
Liver
;
Mice
;
Pluripotent Stem Cells
;
Polymerase Chain Reaction
;
Reverse Transcription
;
Up-Regulation
8.SNP genetic polymorphisms of MDR-1, CYP1A2 and CYPB11 genes in four canine breeds upon toxicological evaluation.
Rosa GAGLIARDI ; Silvia LLAMBI ; M Victoria ARRUGA
Journal of Veterinary Science 2015;16(3):273-280
The fields of pharmacogenetics and pharmacogenomics have become increasingly promising regarding the clinical application of genetic data to aid in prevention of adverse reactions. Specific screening tests can predict which animals express modified proteins or genetic sequences responsible for adverse effects associated with a drug. Among the genetic variations that have been investigated in dogs, the multidrug resistance gene (MDR) is the best studied. However, other genes such as CYP1A2 and CYP2B11 control the protein syntheses involved in the metabolism of many drugs. In the present study, the MDR-1, CYP1A2 and CYP2B11 genes were examined to identify SNP polymorphisms associated with these genes in the following four canine breeds: Uruguayan Cimarron, Border Collie, Labrador Retriever and German Shepherd. The results revealed that several SNPs of the CYP1A2 and CYP2B11 genes are potential targets for drug sensitivity investigations.
Animals
;
Aryl Hydrocarbon Hydroxylases/*genetics/metabolism
;
Cytochrome P-450 CYP1A2/*genetics/metabolism
;
Dogs/*genetics/metabolism
;
P-Glycoprotein/*genetics/metabolism
;
*Polymorphism, Single Nucleotide
;
Steroid Hydroxylases/*genetics/metabolism
9.Functional Significance of Cytochrome P450 1A2 Allelic Variants, P450 1A2*8, *15, and *16 (R456H, P42R, and R377Q).
Young Ran LIM ; In Hyeok KIM ; Songhee HAN ; Hyoung Goo PARK ; Mi Jung KO ; Young Jin CHUN ; Chul Ho YUN ; Donghak KIM
Biomolecules & Therapeutics 2015;23(2):189-194
P450 1A2 is responsible for the metabolism of clinically important drugs and the metabolic activation of environmental chemicals. Genetic variations of P450 1A2 can influence its ability to perform these functions, and thus, this study aimed to characterize the functional significance of three P450 1A2 allelic variants containing nonsynonymous single nucleotide polymorphisms (P450 1A2*8, R456H; *15, P42R; *16, R377Q). Variants containing these SNPs were constructed and the recombinant enzymes were expressed and purified in Escherichia coli. Only the P42R variant displayed the typical CO-binding spectrum indicating a P450 holoenzyme with an expression level of approximately 170 nmol per liter culture, but no P450 spectra were observed for the two other variants. Western blot analysis revealed that the level of expression for the P42R variant was lower than that of the wild type, however the expression of variants R456H and R377Q was not detected. Enzyme kinetic analyses indicated that the P42R mutation in P450 1A2 resulted in significant changes in catalytic activities. The P42R variant displayed an increased catalytic turnover numbers (k(cat)) in both of methoxyresorufin O-demethylation and phenacetin O-deethylation. In the case of phenacetin O-deethylation analysis, the overall catalytic efficiency (k(cat)/K(m)) increased up to 2.5 fold with a slight increase of its K(m) value. This study indicated that the substitution P42R in the N-terminal proline-rich region of P450 contributed to the improvement of catalytic activity albeit the reduction of P450 structural stability or the decrease of substrate affinity. Characterization of these polymorphisms should be carefully examined in terms of the metabolism of many clinical drugs and environmental chemicals.
Biotransformation
;
Blotting, Western
;
Cytochrome P-450 CYP1A2*
;
Escherichia coli
;
Genetic Variation
;
Metabolism
;
Phenacetin
;
Polymorphism, Single Nucleotide
10.Measurement of Human Cytochrome P450 Enzyme Induction Based on Mesalazine and Mosapride Citrate Treatments Using a Luminescent Assay.
Young Hoon KIM ; Young Ji BAE ; Hyung Soo KIM ; Hey Jin CHA ; Jae Suk YUN ; Ji Soon SHIN ; Won Keun SEONG ; Yong Moon LEE ; Kyoung Moon HAN
Biomolecules & Therapeutics 2015;23(5):486-492
Drug metabolism mostly occurs in the liver. Cytochrome P450 (CYP) is a drug-metabolizing enzyme that is responsible for many important drug metabolism reactions. Recently, the US FDA and EU EMA have suggested that CYP enzyme induction can be measured by both enzymatic activity and mRNA expression. However, these experiments are time-consuming and their inter-assay variability can lead to misinterpretations of the results. To resolve these problems and establish a more powerful method to measure CYP induction, we determined CYP induction by using luminescent assay. Luminescent CYP assays link CYP enzyme activity to firefly luciferase luminescence technology. In this study, we measured the induction of CYP isozymes (1A2, 2B6, 2C9, and 3A4) in cryopreserved human hepatocytes (HMC424, 478, and 493) using a luminometer. We then examined the potential induction abilities (unknown so far) of mesalazine, a drug for colitis, and mosapride citrate, which is used as an antispasmodic drug. The results showed that mesalazine promotes CYP2B6 and 3A4 activities, while mosapride citrate promotes CYP1A2, 2B6, and 3A4 activities. Luminescent CYP assays offer rapid and safe advantages over LC-MS/MS and qRT-PCR methods. Furthermore, luminescent CYP assays decrease the interference between the optical properties of the test compound and the CYP substrates. Therefore, luminescent CYP assays are less labor intensive, rapid, and can be used as robust tools for high-throughput CYP screening during early drug discovery.
Citric Acid*
;
Colitis
;
Cytochrome P-450 CYP1A2
;
Cytochrome P-450 Enzyme System*
;
Cytochromes*
;
Drug Discovery
;
Enzyme Induction*
;
Fireflies
;
Hepatocytes
;
Humans*
;
Isoenzymes
;
Liver
;
Luciferases
;
Luminescence
;
Luminescent Measurements*
;
Mass Screening
;
Mesalamine*
;
Metabolism
;
RNA, Messenger

Result Analysis
Print
Save
E-mail