1.Therapeutic effect of dimethyl dimethoxy biphenyl dicarboxylate on collagen-induced arthritis in rats.
Roba M TALAAT ; Amira S ABO-EL-ATTA ; Sabah M FAROU ; Karima I EL-DOSOKY
Chinese journal of integrative medicine 2015;21(11):846-854
OBJECTIVETo study the effect of oral administration of dimethyl dimethoxy biphenyl dicarboxylate (DDB) on adjusting angiogeneic/inflammatory mediators and ameliorating the pathology of bones in rats with collagen-induced arthritis (CIA).
METHODSWistar rat model of CIA was set up using bovine collagen type II. Fifty rats were divided into five groups randomly: normal, CIA model, DDB treatment, methotrexate (MTX) treatment, and combined DDB+MTX treatment. Ankle joints of rats were imaged with digital X-ray machine to show the destruction of joints. Fore and hind paw and knee joints were removed above the ankle joint then processed for haematoxylin and eosin staining. Plasma levels of vascular endothelial growth factor (VEGF), platelet derived growth factor, interleukin-8 (IL-8), IL-4, tumor necrosis factor α (TNF-α), and cyclooxygenase-2 (COX-2) were quantified by enzyme-linked immunosorbent assay. Nitric oxide levels were detected by Griess reagent.
RESULTSCompared with the CIA model group, a remarkable reduction in various angiogenic (VEGF and IL-8) and inflammatory mediators (TNF-α, IL-4 and COX-2) after treatment with DDB either alone or combined with MTX P<0.05 or P<0.01). Histopathological and X-ray findings were confirmatory to the observed DDB anti-arthritic effect. The DDB-treated group showed amelioration in signs of arthritis which appeared essentially similar to normal.
CONCLUSIONOur data shed light on the therapeutic efficacy of DDB in experimental rheumatoid arthritis (RA) compared with a choice drug (MTX) and it may be offered as a second-line drug in the treatment of RA.
Animals ; Arthritis, Experimental ; chemically induced ; diagnostic imaging ; drug therapy ; pathology ; Arthritis, Rheumatoid ; diagnostic imaging ; drug therapy ; pathology ; Collagen ; Cyclooxygenase 2 ; blood ; Dioxoles ; therapeutic use ; Enzyme-Linked Immunosorbent Assay ; Female ; Interleukin-4 ; blood ; Interleukin-8 ; blood ; Methotrexate ; therapeutic use ; Nitric Oxide ; biosynthesis ; Platelet-Derived Growth Factor ; analysis ; Radiography ; Rats ; Rats, Wistar ; Tumor Necrosis Factor-alpha ; blood ; Vascular Endothelial Growth Factor A ; blood
2.Cyclooxygenase-2 blockade inhibits accumulation and function of myeloid-derived suppressor cells and restores T cell response after traumatic stress.
Ren-jie LI ; Lin LIU ; Wei GAO ; Xian-zhou SONG ; Xiang-jun BAI ; Zhan-fei LI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(2):234-240
Myeloid-derived suppressor cells (MDSCs) play a crucial role in T cell dysfunction, which is related to poor outcome in patients with severe trauma. Cyclooxygenase-2 (Cox-2) contributes to immune disorder in trauma and infection via production of prostaglandin E2. However, the role of Cox-2 in the accumulation and function of MDSCs after traumatic stress has not been fully elucidated. In the present study, we treated murine trauma model with NS398, a selective Cox-2 inhibitor. Then the percentages of CD11b+/Gr-1+ cells, proliferation and apoptosis of CD4+ T cells were determined. Arginase activity and arginase-1 (Arg-1) protein expression of splenic CD11b+/Gr-1+ cells, and delayed-type hypersensitivity (DTH) response were analyzed. The results showed that Cox-2 blockade significantly decreased the percentages of CD11b+/Gr-1+ cells in the spleen and bone marrow 48 and 72 h after traumatic stress. NS398 inhibited arginase activity and down-regulated the Arg-1 expression of splenic CD11b+/Gr-1+ cells. Moreover, NS398 could promote proliferation and inhibit apoptosis of CD4+ T cells. It also restored DTH response of traumatic mice. Taken together, our data revealed that Cox-2 might play a pivotal role in the accumulation and function of MDSC after traumatic stress.
Animals
;
Apoptosis
;
drug effects
;
Arginase
;
biosynthesis
;
CD11b Antigen
;
biosynthesis
;
CD4-Positive T-Lymphocytes
;
drug effects
;
metabolism
;
Cell Proliferation
;
drug effects
;
Cyclooxygenase 2
;
biosynthesis
;
Cyclooxygenase 2 Inhibitors
;
administration & dosage
;
Gene Expression Regulation
;
drug effects
;
Humans
;
Mice
;
Myeloid Progenitor Cells
;
metabolism
;
pathology
;
Nitrobenzenes
;
administration & dosage
;
Stress Disorders, Traumatic
;
drug therapy
;
genetics
;
pathology
;
Sulfonamides
;
administration & dosage
3.Significances of COX-2, p21, Ki-67 expression and HPV infection in nasal inverted papilloma.
Xianying MENG ; Xu WU ; Yibing YUAN
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2014;28(23):1823-1827
OBJECTIVE:
To investigate the significance of expression of COX-2, p21, Ki67 and HPV in nasal inverted papilloma.
METHOD:
Detecting COX-2, p21, Ki-67 in 30 cases of nasal inverted papilloma (NIP), 20 cases of nasal polyps (NP) and 10 cases of normal nasal mucosa (NM) by two step immunohistochemical method, and HPV virus by flow-through hybridization method.
RESULT:
The positive expression rate of COX-2 and Ki-67 in NIP, NP and NM group was decreased in turn, COX-2 had significant difference in the groups(χ2 = 30.00, P< 0. 05); the positive expression rate of Ki-67 had significant differences between NIP and NM group (χ2 = 8. 533, P<0. 05). The expression of COX-2 in NIP tissues was positively correlate with that of Ki-67 by using Spearman rank correlation analysis (r=0.78, P<0.05). Expression of p21 were not observed in NIP group. The positive rate of HPV was 26. 67% in 30 cases of NIP, all of HPV16 type.
CONCLUSION
COX-2, Ki-67 and HPV infection have certain correlation with the occurrence of NIP. The occurrence of NIP has relationship with inflammatory reaction mediated by COX-2. Ki-67 can well reflect the proliferation activity of tumor cells, and can be used to measure the proliferation rate of nasal inverted papilloma. The COX-2 and Ki-67 have a synergistic role in the pathogenesis of NIP. p21 has no significant relationship with the incidence of NIP. HPV infection is related to the pathogenesis of NIP, but not as a;major factor in the pathogenesis of NIP.
Case-Control Studies
;
Cyclin-Dependent Kinase Inhibitor p21
;
biosynthesis
;
Cyclooxygenase 2
;
biosynthesis
;
Humans
;
Ki-67 Antigen
;
biosynthesis
;
Nasal Mucosa
;
Nasal Polyps
;
Nose Neoplasms
;
genetics
;
virology
;
Papilloma, Inverted
;
genetics
;
virology
;
Papillomavirus Infections
4.miRNA expression profile during fluid shear stress-induced osteogenic differentiation in MC3T3-E1 cells.
Zhi-hui MAI ; Zhu-li PENG ; Jing-lan ZHANG ; Lin CHEN ; Huan-you LIANG ; Bin CAI ; Hong AI
Chinese Medical Journal 2013;126(8):1544-1550
BACKGROUNDMechanical stress plays an important role in the maintenance of bone homeostasis. Current hypotheses suggest that interstitial fluid flow is an important component of the system by which tissue level strains are amplified in bone. This study aimed to test the hypothesis that the short-term and appropriate fluid shear stress (FSS) is expected to promote the terminal differentiation of pre-osteoblasts and detect the expression profile of microRNAs in the FSS-induced osteogenic differentiation in MC3T3-E1 cells.
METHODSMC3T3-E1 cells were subjected to 1 hour of FSS at 12 dyn/cm(2) using a parallel plate flow system. After FSS treatment, cytoskeleton immunohistochemical staining and microRNAs (miRNAs) were detected immediately. Osteogenic gene expression and immunohistochemical staining for collagen type I were tested at the 24th hour after treatment, alkaline phosphatase (ALP) activity assay was performed at 24th, 48th, and 72 th hours after FSS treatment, and Alizarin Red Staining was checked at day 12.
RESULTSOne hour of FSS at 12 dyn/cm(2) induced actin stress fiber formation and rearrangement, up-regulated osteogenic gene expression, increased ALP activity, promoted synthesis and secretion of type I collagen, enhanced nodule formation, and promoted terminal differentiation in MC3T3-E1 cells. During osteogenic differentiation, expression levels of miR-20a, -21, -19b, -34a, -34c, -140, and -200b in FSS-induced cells were significantly down-regulated.
CONCLUSIONThe short-term and appropriate FSS is sufficient to promote terminal differentiation of pre-osteoblasts and a group of miRNAs may be involved in FSS-induced pre-osteoblast differentiation.
Actins ; chemistry ; Alkaline Phosphatase ; metabolism ; Animals ; Cell Differentiation ; Cells, Cultured ; Collagen Type I ; biosynthesis ; Core Binding Factor Alpha 1 Subunit ; genetics ; Cyclooxygenase 2 ; genetics ; Gene Expression Profiling ; Mice ; MicroRNAs ; physiology ; Osteoblasts ; cytology ; Osteogenesis ; Stress, Mechanical ; Stress, Physiological
5.Extract of buckwheat sprouts scavenges oxidation and inhibits pro-inflammatory mediators in lipopolysaccharide-stimulated macrophages (RAW264.7).
Rajendra KARKI ; E-mail: mokpou@yahoo.co.kr, DBKIM@MOKPO.AC.KR. ; Cheol-Ho PARK ; Dong-Wook KIM
Journal of Integrative Medicine 2013;11(4):246-252
OBJECTIVEBuckwheat has been considered as a potential source of nutraceutical components on the world market of probiotic foodstuffs. The purpose of this study was to evaluate the effects of tartary buckwheat (Fagopyrum tataricum) sprouts on oxidation and pro-inflammatory mediators.
METHODSThe anti-oxidant effects of buckwheat extract (BWE) and rutin were evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH)- and nitric oxide (NO)-scavenging activities, serum peroxidation and chelating assays. Lipopolysaccharide (LPS)-stimulated RAW264.7 cells were used to evaluate anti-inflammatory activities of buckwheat and rutin. NO production in LPS-stimulated RAW264.7 cells was determined by using Griess reagent. The expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-kappa B (NF-κB) p65 subunit in cytosolic and nuclear portions were determined by Western blot analysis. Also, the production of inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) was determined by enzyme-linked immunosorbent assay.
RESULTSInhibitory concentration 50 values for DPPH- and NO-scavenging activities of BWE were 24.97 and 72.54 μg/mL respectively. BWE inhibited serum oxidation and possessed chelating activity. Furthermore, BWE inhibited IL-6 and TNF-α production in LPS-stimulated RAW264.7 cells. Also, BWE inhibited iNOS and COX-2 expression and NF-κB p65 translocation.
CONCLUSIONBuckwheat sprouts possessed strong antioxidant activity and inhibited production of pro-inflammatory mediators in the applied model systems. Thus, buckwheat can be suggested to be beneficial in inflammatory diseases by inhibiting the free radicals and inflammatory mediators.
Animals ; Cells, Cultured ; Cyclooxygenase 2 ; analysis ; Fagopyrum ; Free Radical Scavengers ; pharmacology ; Inflammation Mediators ; antagonists & inhibitors ; Interleukin-6 ; biosynthesis ; Lipopolysaccharides ; pharmacology ; Macrophages ; drug effects ; metabolism ; Mice ; NF-kappa B ; metabolism ; Nitric Oxide ; biosynthesis ; Nitric Oxide Synthase Type II ; analysis ; Plant Extracts ; pharmacology ; Tumor Necrosis Factor-alpha ; biosynthesis
6.A novel beta-glucan produced by Paenibacillus polymyxa JB115 induces nitric oxide production in RAW264.7 macrophages.
Zhi Qiang CHANG ; Joong Su LEE ; Mi Hyun HWANG ; Joo Heon HONG ; Hee Kyoung JUNG ; Sam Pin LEE ; Seung Chun PARK
Journal of Veterinary Science 2009;10(2):165-167
The effect of extracellular beta-(1-->3), (1-->6)-glucan, produced by Paenibacillus polymyxa JB115, on nitric oxide (NO) production in RAW264.7 macrophages was investigated. beta-glucan induced the production of NO by RAW264.7 macrophages in a concentration- and time-dependent manner. Moreover, beta-glucan stimulation increased the mRNA expression of iNOS, COX-2 and IL-6 in RAW264.7 macrophages in a concentration-dependent manner.
Animals
;
Bacillus/*metabolism
;
Cell Line
;
Cyclooxygenase 2/biosynthesis/genetics
;
Interleukin-6/biosynthesis/genetics
;
Lipopolysaccharides/pharmacology
;
Macrophages/*drug effects/enzymology/immunology
;
Mice
;
Nitric Oxide/*biosynthesis/immunology
;
Nitric Oxide Synthase Type II/biosynthesis/genetics/metabolism
;
RNA, Messenger/biosynthesis/genetics
;
Reverse Transcriptase Polymerase Chain Reaction
;
beta-Glucans/metabolism/*pharmacology
7.Ginsenoside Rg1 modulates COX-2 expression in the substantia nigra of mice with MPTP-induced Parkinson disease through the P38 signaling pathway.
Qian WANG ; Huan ZHENG ; Zuo-feng ZHANG ; Yu-xin ZHANG
Journal of Southern Medical University 2008;28(9):1594-1598
OBJECTIVETo investigate the role of P38 signaling pathway in modulating the expression of cyclooxygenase-2 (COX-2) in the substantia nigra (SN) of mice with 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced Parkinson disease (PD), and explore the possible mechanism of the dopaminergic (DA) neuron death in PD and the effects of ginsenoside Rg1 on the P38 signaling pathway and DA neurons.
METHODSC57BL6 mice were treated with MPTP to produce the subacute PD model, and the behavioral changes were observed. Immunohistochemistry and Western blotting for tyrosine hydroxylase (TH), COX-2, prostaglandin E2 (PGE2) and phosphorylated P38 (p-P38) were used to observe the changes of positive cell number in the midbrain after treatment with ginsenoside Rg1.
RESULTSCompared with the control mice, the mice with PD presented with typical symptoms of PD. The number of p-P38-, COX-2-, and PGE2-positive cells significantly increased in the SN area 6 h after the 3rd injection of 30 mg/kg MPTP (P<0.01). The number of TH-positive neurons in the PD model group was substantially reduced by about 60% (P<0.01) in 24 h after the 5th injection of MPTP. In mice with ginsenoside Rg1 treatment, the number of p-P38-, COX-2-, and PGE2-positive cells was reduced obviously 6 h after the 3rd injection of MPTP as compared with that in the model group (P<0.01). The number of TH-positive neurons in the SN was decreased by only 30% (P<0.01 vs control group) 24h after the 5th injection of MPTP.
CONCLUSIONP38 signaling pathway may play an important role in modulating COX-2 expression in the SN in the early stage of MPTP-induced subacute PD, and ginsenoside Rg1 may act on the P38 signaling pathway to protect the DA neurons in PD.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine ; Animals ; Blotting, Western ; Cyclooxygenase 2 ; biosynthesis ; Ginsenosides ; pharmacology ; Immunohistochemistry ; Male ; Mice ; Mice, Inbred C57BL ; Neurons ; drug effects ; metabolism ; pathology ; Parkinson Disease, Secondary ; chemically induced ; metabolism ; physiopathology ; Signal Transduction ; drug effects ; Substantia Nigra ; drug effects ; metabolism ; pathology ; p38 Mitogen-Activated Protein Kinases ; metabolism
8.Cyclooxygenase-2 inhibitor inhibits hippocampal synaptic reorganization in pilocarpine-induced status epilepticus rats.
Hai-Ju ZHANG ; Ruo-Peng SUN ; Ge-Fei LEI ; Lu YANG ; Chun-Xi LIU
Journal of Zhejiang University. Science. B 2008;9(11):903-915
OBJECTIVETo examine modulations caused by cyclooxygenase-2 (COX-2) inhibitors on altered microenvironments and overbalanced neurotransmitters in pilocarpine-induced epileptic status rats and to investigate possible mechanisms.
METHODSCelecoxib (a COX-2 inhibitor) was administered 45 min prior to pilocarpine administration. The effects of COX-2 inhibitors on mIPSCs (miniature GABAergic inhibitory postsynaptic currents) of CA3 pyramidal cells in the hippocampus were recorded. Expressions of COX-2, c-Fos, newly generated neurons, and activated microgliosis were analyzed by immunohistochemistry, and expressions of alpha-subunit of gamma-amino butyric acid (GABA(A)) receptors and mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) activity were detected by Western blotting.
RESULTSPretreatment with celecoxib showed protection against pilocarpine-induced seizures. Celecoxib prevented microglia activation in the hilus and inhibited the abnormal neurogenesis and astrogliosis in the hippocampus by inhibiting MAPK/ERK activity and c-Fos transcription. Celecoxib also up-regulated the expression of GABA(A) receptors. NS-398 (N-2-cyclohexyloxy-4-nitrophenyl-methanesulfonamide), another COX-2 inhibitor, enhanced the frequency and decay time of mIPSCs.
CONCLUSIONThe COX-2 inhibitor celecoxib decreased neuronal excitability and prevented epileptogenesis in pilocarpine-induced status epilepticus rats. Celecoxib regulates synaptic reorganization by inhibiting astrogliosis and ectopic neurogenesis by attenuating MAPK/ERK signal activity, mediated by a GABAergic mechanism.
Animals ; Blotting, Western ; Celecoxib ; Cyclooxygenase 2 ; metabolism ; Cyclooxygenase 2 Inhibitors ; pharmacology ; Disease Models, Animal ; Fibrocystic Breast Disease ; metabolism ; Hippocampus ; drug effects ; enzymology ; pathology ; Immunohistochemistry ; MAP Kinase Signaling System ; drug effects ; Male ; Mitogen-Activated Protein Kinase Kinases ; metabolism ; Nitrobenzenes ; pharmacology ; Pilocarpine ; Proto-Oncogene Proteins c-fos ; metabolism ; Pyrazoles ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptors, GABA-A ; biosynthesis ; Status Epilepticus ; chemically induced ; enzymology ; pathology ; Sulfonamides ; pharmacology ; Synapses ; drug effects ; pathology
9.Effect of NS-398 on cyclooxygenase-2 expression and proliferation of HepG2 cells.
Qing WU ; Wei CHANG ; Chang-cai ZHU ; Li-rong FAN ; Shi-zhen SONG
Chinese Journal of Preventive Medicine 2008;42(4):260-263
OBJECTIVETo investigate anticancer effect and molecular mechanism of N-[(Cyclohexyloxy)-4-nitrophenyl] methanesulfonamide on HepG2 cells in vitro.
METHODSHepG2 cells were treated with various concentrations (100, 200, 300, 400 micromol/L) of NS-398 [selective for cyclooxygenase 2 (COX-2) inhibition]. Cell growth was measured by MTT method, DNA fragmentation gel analysis was used to analyze the apoptosis cells, DNA ploidy and apoptotic cell percentage were examined by flow cytometry (FCM). PGE2 concentration was measured by radioimmunoassay method. The expressions of COX-2 were also examined by Western blot analysis.
RESULTSNS-398 inhibited HepG2 cell proliferation and induced apoptosis in a concentration-dependent manner. DNA ploidy analysis showed that S phase cells were significantly decreased and quiescent G1 phase was accumulated with NS-398 concentration increasing. The IC50 of 24 hours was 300 micromol/L. The release of PGE2 was significantly reduced in HepG2 cells with the values of NS-398 being (0.70 +/- 0.02), (0.48 +/- 0.02), (0.29 +/- 0.01) and (0.18 +/- 0.01) respectively, as compared with control group (0.03 +/- 0.01). NS-398 could inhibit the activity and expression of COX-2, with higher concentration, it can significantly down-regulate the expression of COX-2 (t = 3.736, 1.623, 1.810, 2.587, P < 0.01).
CONCLUSIONNS-398 might significantly inhibit the proliferation of HepG2 cells and induce apoptosis. The mechanisms were related with the accumulation of quiescent G1 phase and the inhibition of COX-2 activity.
Apoptosis ; drug effects ; Cell Line, Tumor ; metabolism ; Cell Proliferation ; drug effects ; Cyclooxygenase 2 ; biosynthesis ; Humans ; Nitrobenzenes ; pharmacology ; Sulfonamides ; pharmacology
10.Inhibition of LPS-induced cyclooxygenase 2 and nitric oxide production by transduced PEP-1-PTEN fusion protein in Raw 264.7 macrophage cells.
Sun Hwa LEE ; Yeom Pyo LEE ; So Young KIM ; Min Seop JEONG ; Min Jung LEE ; Hye Won KANG ; Hoon Jae JEONG ; Dae Won KIM ; Eun Joung SOHN ; Sang Ho JANG ; Yeon Hyang KIM ; Hyung Joo KWON ; Sung Woo CHO ; Jinseu PARK ; Won Sik EUM ; Soo Young CHOI
Experimental & Molecular Medicine 2008;40(6):629-638
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor suppressor. Although it is well known to have various physiological roles in cancer, its inhibitory effect on inflammation remains poorly understood. In the present study, a human PTEN gene was fused with PEP-1 peptide in a bacterial expression vector to produce a genetic in-frame PEP-1-PTEN fusion protein. The expressed and purified PEP-1-PTEN fusion protein were transduced efficiently into macrophage Raw 264.7 cells in a time- and dose- dependent manner when added exogenously in culture media. Once inside the cells, the transduced PEP-1-PTEN protein was stable for 24 h. Transduced PEP-1-PTEN fusion protein inhibited the LPS-induced cyclooxygenase 2 (COX-2) and iNOS expression levels in a dose-dependent manner. Furthermore, transduced PEP-1-PTEN fusion protein inhibited the activation of NF-kappa B induced by LPS. These results suggest that the PEP-1-PTEN fusion protein can be used in protein therapy for inflammatory disorders.
Animals
;
Cell Line
;
Cyclooxygenase 2/*metabolism
;
Cysteamine/*analogs & derivatives
;
Enzyme Activation
;
Humans
;
Lipopolysaccharides/*pharmacology
;
Macrophages/*metabolism
;
Mice
;
NF-kappa B/metabolism
;
Nitric Oxide/*biosynthesis
;
Nitric Oxide Synthase Type II/metabolism
;
PTEN Phosphohydrolase/*genetics
;
Peptides/*genetics
;
Recombinant Fusion Proteins/*biosynthesis/genetics
;
Signal Transduction

Result Analysis
Print
Save
E-mail