1.Screening the effective components in treating dampness stagnancy due to spleen deficiency syndrome and elucidating the potential mechanism of Poria water extract.
Huijun LI ; Dandan ZHANG ; Tianhe WANG ; Xinyao LUO ; Heyuan XIA ; Xiang PAN ; Sijie HAN ; Pengtao YOU ; Qiong WEI ; Dan LIU ; Zhongmei ZOU ; Xiaochuan YE
Chinese Journal of Natural Medicines (English Ed.) 2023;21(2):83-98
Poria is an important medicine for inducing diuresis to drain dampness from the middle energizer. However, the specific effective components and the potential mechanism of Poria remain largely unknown. To identify the effective components and the mechanism of Poria water extract (PWE) to treat dampness stagnancy due to spleen deficiency syndrome (DSSD), a rat model of DSSD was established through weight-loaded forced swimming, intragastric ice-water stimulation, humid living environment, and alternate-day fasting for 21 days. After 14 days of treatment with PWE, the results indicated that PWE increased fecal moisture percentage, urine output, D-xylose level and weight; amylase, albumin, and total protein levels; and the swimming time of rats with DSSD to different extents. Eleven highly related components were screened out using the spectrum-effect relationship and LC-MS. Mechanistic studies revealed that PWE significantly increased the expression of serum motilin (MTL), gastrin (GAS), ADCY5/6, p-PKAα/β/γ cat, and phosphorylated cAMP-response element binding protein in the stomach, and AQP3 expression in the colon. Moreover, it decreased the levels of serum ADH, the expression of AQP3 and AQP4 in the stomach, AQP1 and AQP3 in the duodenum, and AQP4 in the colon. PWE induced diuresis to drain dampness in rats with DSSD. Eleven main effective components were identified in PWE. They exerted therapeutic effect by regulating the AC-cAMP-AQP signaling pathway in the stomach, MTL and GAS levels in the serum, AQP1 and AQP3 expression in the duodenum, and AQP3 and AQP4 expression in the colon.
Animals
;
Rats
;
Poria
;
Spleen
;
Albumins
;
Chromatography, Liquid
;
Cyclic AMP Response Element-Binding Protein
2.Mechanism of miR-26a-5p/cAMP response element binding protein 1 molecular axis regulating osteogenic differentiation of adipose-derived mesenchymal stem cells.
Sanfu LIN ; Shoubo CHEN ; Kaibin FANG ; Jinnan SHI ; Wenhua WU ; Wenhuai WANG
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(5):615-621
OBJECTIVE:
To investigate the regulatory effects of miR-26a-5p on the osteogenic differentiation of adipose-derived mesenchymal stem cells (ADSCs) by regulating cAMP response element binding protein 1 (CREB1).
METHODS:
The adipose tissues of four 3-4 weeks old female C57BL/6 mice were collected and the cells were isolated and cultured by digestion separation method. After morphological observation and identification by flow cytometry, the 3rd-generation cells were subjected to osteogenic differentiation induction. At 0, 3, 7, and 14 days after osteogenic differentiation induction, the calcium deposition was observed by alizarin red staining, ALP activity was detected, miR- 26a-5p and CREB1 mRNA expressions were examined by real-time fluorescence quantitative PCR, and CREB1 protein and its phosphorylation (phospho-CREB1, p-CREB1) level were measured by Western blot. After the binding sites between miR-26a-5p and CREB1 was predicted by the starBase database, HEK-293T cells were used to conduct a dual-luciferase reporter gene experiment to verify the targeting relationship (represented as luciferase activity after 48 hours of culture). Finally, miR-26a-p inhibitor (experimental group) and the corresponding negative control (control group) were transfected into ADSCs. Alizarin red staining, ALP activity, real-time fluorescent quantitative PCR (miR-26a-5p) and Western blot [CREB1, p-CREB1, Runt-related transcription factor 2 (RUNX2), and osteocalcin (OCN)] were performed at 7 and 14 days after osteogenic induction culture.
RESULTS:
The cultured cells were identified as ADSCs. With the prolongation of osteogenic induction culture, the number of calcified nodules and ALP activity significantly increased ( P<0.05). The relative expression of miR-26a-5p in the cells gradually decreased, while the relative expressions of CREB1 mRNA and protein, as well as the relative expression of p-CREB1 protein were increased. The differences were significant between 7, 14 days and 0 day ( P<0.05). There was no significant difference in p-CREB1/CREB1 between different time points ( P>0.05). The starBase database predicted that miR-26a-5p and CREB1 had targeted binding sequences, and the dual-luciferase reporter gene experiment revealed that overexpression of miR-26a-5p significantly suppressed CREB1 wild-type luciferase activity ( P<0.05). After 7 and 14 days of osteogenic induction, compared with the control group, the number of calcified nodules, ALP activity, and relative expressions of CREB1, p-CREB1, OCN, and RUNX2 proteins in the experimental group significantly increased ( P<0.05). There was no significant difference in p-CREB1/CREB1 between the two groups ( P>0.05).
CONCLUSION
Knocking down miR-26a-5p promoted the osteogenic differentiation of ADSCs by up-regulating CREB1 and its phosphorylation.
Animals
;
Female
;
Mice
;
Cell Differentiation
;
Cells, Cultured
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Cyclic AMP Response Element-Binding Protein/metabolism*
;
Mesenchymal Stem Cells
;
Mice, Inbred C57BL
;
MicroRNAs/metabolism*
;
Osteocalcin/metabolism*
;
Osteogenesis/genetics*
;
RNA, Messenger/genetics*
3.Effect of Tongdu Tiaoshen acupuncture on CREB/BDNF/TrkB signaling pathway of hippocampus in rats with post-stroke depression.
Pei-Yang SUN ; Hao-Ran CHU ; Nan LI ; Hui LIU ; Shi-Yang LIU ; Fang ZHANG ; Wei LI ; Shui-Rou CHU ; Pei-Fang LI
Chinese Acupuncture & Moxibustion 2022;42(8):907-913
OBJECTIVE:
To observe the regulative effect of Tongdu Tiaoshen acupuncture on the depression-like behavior and cAMP-response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF)/tyrosine protein kinase B (TrkB) signaling pathway of hippocampus in rats with post-stroke depression (PSD), and to explore its possible mechanism on improving PSD.
METHODS:
A total of 36 SPF SD rats were randomized into a sham operation group, a model group and a Tongdu Tiaoshen group, 12 rats in each group. The compound method of Zea Longa suture-occlusion and chronic unpredictable mild stress (CUMS) was used to establish the PSD model in rats of the model group and the Tongdu Tiaoshen group. On the 4th day after modeling, acupuncture was applied at "Dazhui" (GV 14), "Shuigou" (GV 26), "Baihui" (GV 20) and "Shenting" (GV 24) in the Tongdu Tiaoshen group, 40 min every time, once a day, 6 times a week for 4 weeks consecutively. On the 2nd day after PSD modeling and after 4-week intervention, Zea Longa neurobehavioral score was evaluated, sucrose water consumption test and open-field test were performed; biochemical method was used to detect the SOD, CAT activity and MDA level in hippocampal CA1 area; ELISA method was used to detect the serum level of BDNF; real-time PCR was used to detect the mRNA expression of BDNF, TrkB and CREB in hippocampal CA1 area; Western blot was used to detect the protein expression of BDNF, TrkB, CREB and p-CREB in hippocampal CA1 area.
RESULTS:
Compared with the sham operation group, Zea Longa neurobehavioral scores were increased (P<0.05), percentage of sucrose water consumption, horizontal motion and vertical motion scores of open-field test were decreased after modeling and intervention in the model group and after modeling in the Tongdu Tiaoshen group (P<0.05). Compared with the model group, Zea Longa neurobehavioral score was decreased (P<0.05), percentage of sucrose water consumption, horizontal motion and vertical motion scores of open-field test were increased after intervention in the Tongdu Tiaoshen group (P<0.05). Compared with the sham operation group, the SOD and CAT activity in hippocampal CA1 area and serum level of BDNF were decreased (P<0.05), MDA level in hippocampal CA1 area was increased in the model group (P<0.05); compared with the model group, the SOD and CAT activity in hippocampal CA1 area and serum level of BDNF were increased (P<0.05), MDA level was decreased in the Tongdu Tiaoshen group (P<0.05). Compared with the sham operation group, the mRNA expression of BDNF, TrkB and CREB as well as the protein expression of BDNF, TrkB, CREB and p-CREB were decreased in hippocampal CA1 area in the model group (P<0.05); compared with the model group, the mRNA expression of BDNF, TrkB and CREB, the protein expression of BDNF, TrkB and p-CREB as well as the ratio of p-CREB/CREB were increased in the Tongdu Tiaoshen group (P<0.05).
CONCLUSION
Tongdu Tiaoshen acupuncture can improve the depression-like behavior in PSD rats, the mechanism may be related to the inhibition of oxidative stress in hippocampal tissues and the enhanced activity of CREB/BDNF/TrkB signaling pathway.
Acupuncture Therapy
;
Animals
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Cyclic AMP Response Element-Binding Protein/metabolism*
;
Depression/therapy*
;
Hippocampus/metabolism*
;
RNA, Messenger
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Stroke/complications*
;
Sucrose
;
Superoxide Dismutase
6.Effect of miR-203/CREB1 Signaling Regulation Mediated by DNA Methylation on the Proliferation and Apoptosis of Multiple Myeloma Cells.
Cheng-Bo XU ; Bin LIAO ; Hai-Ying FU ; Yan QI ; Jian-Zhen SHEN
Journal of Experimental Hematology 2022;30(3):790-796
OBJECTIVE:
To investigate the effect of miR-203/CREB1 signaling regulation mediated by DNA methylation on the proliferation, invasion and apoptosis of multiple myeloma (MM) cells.
METHODS:
The methylation level of miR-203 in the RPMI 8226 cells was detected by bisulfite sequcucing polymerase chain reaction (BSP). The mRNA expression of miR-203 was measured by quantitative real-time polymerase chain reaction. RPMI 8226 cells were treated with DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-Aza-CdR). The miR-203 mimic in MM cell line RPMI 8226 was transfected to establish overexpressed miR-203 cell. The proliferation, invasion ability and apoptosis of RPMI 8226 cell was detected by CCK-8 assay, Transwell, and flow cytometry, respectively. The targeting relationship between miR-203 and CREB1 was verified by double luciferase report assay. Western blot was used to detect the expression of CREB1 protein.
RESULTS:
Hypermethylation of miR-203 promoter region and low expression level of miR-203 mRNA were detected in the RPMI 8226 cells, which showed that demethylation could induce the expression of miR-203. The proliferation and invasion ability of RPMI 8226 cells after treated by 5-Aza-CdR were inhibited, and showed statistical significance as compared with blank control group (both P<0.05),while the apoptosis rate was promoted (P<0.05). The proliferation, invasion ability and apoptosis of overexpressed miR-203 were the same as the demethylation group. Double luciferase report assay confirmed that CREB1 was the direct target of miR-203. The protein level of CREB1 was inhibited by demethylation and showed statistical significance as compared with control group (P<0.05).
CONCLUSION
MiR-203 targeting CREB1 mediated by DNA methylation leads to maintain the malignant biological behaviors of MM cells.
Apoptosis
;
Azacitidine/pharmacology*
;
Cell Line, Tumor
;
Cell Proliferation
;
Cyclic AMP Response Element-Binding Protein/pharmacology*
;
DNA Methylation
;
Gene Expression Regulation, Neoplastic
;
Humans
;
MicroRNAs/metabolism*
;
Multiple Myeloma/genetics*
;
RNA, Messenger/metabolism*
7.Comparison of the effect between electroacupuncture and NSAIDs on pain memory based on cAMP/PKA/CREB pathway in anterior cingulate gyrus.
Jing SUN ; Jian-Qiao FANG ; Zui SHEN ; Yi-Lin ZHU ; Qin CHEN ; Fang FANG ; Jia-Ling WANG ; Fei LI ; Xiao-Mei SHAO
Chinese Acupuncture & Moxibustion 2020;40(4):397-404
OBJECTIVE:
To observe the direct intervention effects of electroacupuncture (EA) and non-steroid anti-inflammatory drugs (NSAIDs) on pain memory, and to explore their effects on cAMP/PKA/cAMP pathway in anterior cingulate gyrus (ACC).
METHODS:
Fifty clean healthy male SD rats were randomly divided into a control group, a model group, an indomethacin group, an EA group and a sham EA group, 10 rats in each group. Except the control group, the pain memory model was established in the remaining four groups by twice injection of carrageenan at foot; 0.1 mL of 2%λ-carrageenan was subcutaneously injected at the left foot of rats; 14 days later, when the pain threshold of rats of each group returned to the basic level, the second injection was performed with the same procedure. The rats in the EA group were treated with EA at bilateral "Zusanli" (ST 36) for 30 min; the rats in the indomethacin group was treated with indomethacin intragastric administration with the dose of 3 mg/kg; the rats in the sham EA group was treated with EA without electricity at the point 0.3 mm forward "Zusanli" (ST 36) with the depth of 2 mm for 30 min; the rats in the control group was not given any invention. All the above interventions were performed 5 h, 1 d, 2 d and 3 d after the second injection of 2% λ-carrageenan. The left-side paw withdrawal thresholds (PWT) were observed before the first injection, 4 h, 3 d, 5 d after the first injection, before the second injection and 4 h, 1 d, 2 d, 3 d after the second injection. Three days after the second injection, the number of positive cells of cAMP, p-PKA, p-CREB and the number of positive cells of protein co-expression in the right ACC brain area were detected by immunofluorescence, and the relative protein expression of p-PKA and p-CREB were detected by Western blot.
RESULTS:
Compared with the control group, the PWTs in the model group decreased significantly 4 h, 3 d and 5 d after the first injection and 1 d, 2 d and 3 d after the second injection (<0.05); compared with the control group, the positive expression of cAMP, p-PKA and p-CREB in the right ACC brain area in the model group increased significantly (<0.05), and the number of positive cells of the co-expression of cAMP/p-PKA and p-PKA/p-CREB also increased significantly (<0.05). Compared with the model group, indomethacin group and sham EA group, the PWTs in the EA group were increased significantly 1 d, 2 d and 3 d after the second injection (<0.05); compared with the model group, indomethacin group and sham EA group, the positive expression of p-PKA and p-CREB in the right ACC brain area in the EA group decreased significantly (<0.05), and the number of positive cells of co-expression of cAMP/p-PKA and p-PKA/p-CREB was decreased significantly (<0.05). Compared with the model group and sham EA group, the positive expression of cAMP in the right ACC brain area was decreased in the EA group (<0.05).
CONCLUSION
EA have a direct intervention effect on pain memory, which have significant advantage over NSAIDs in the treatment of chronic pain. The advantage effect of EA on pain memory may be related to the inhibition of cAMP/PKA/CREB pathway in ACC area.
Animals
;
Anti-Inflammatory Agents, Non-Steroidal
;
therapeutic use
;
Cyclic AMP
;
metabolism
;
Cyclic AMP Response Element-Binding Protein
;
metabolism
;
Cyclic AMP-Dependent Protein Kinases
;
metabolism
;
Electroacupuncture
;
Gyrus Cinguli
;
metabolism
;
Male
;
Pain Threshold
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
8.Taurochenodeoxycholic acid mediates cAMP-PKA-CREB signaling pathway.
You-Chao QI ; Guo-Zhen DUAN ; Wei MAO ; Qian LIU ; Yong-Liang ZHANG ; Pei-Feng LI
Chinese Journal of Natural Medicines (English Ed.) 2020;18(12):898-906
Taurochenodeoxycholic acid (TCDCA) is one of the main effective components of bile acid, playing critical roles in apoptosis and immune responses through the TGR5 receptor. In this study, we reveal the interaction between TCDCA and TGR5 receptor in TGR5-knockdown H1299 cells and the regulation of inflammation via the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA)-cAMP response element binding (CREB) signal pathway in NR8383 macrophages. In TGR5-knockdown H1299 cells, TCDCA significantly activated cAMP level via TGR5 receptor, indicating TCDCA can bind to TGR5; in NR8383 macrophages TCDCA increased cAMP content compared to treatment with the adenylate cyclase (AC) inhibitor SQ22536. Moreover, activated cAMP can significantly enhance gene expression and protein levels of its downstream proteins PKA and CREB compared with groups of inhibitors. Additionally, TCDCA decreased tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, IL-8 and IL-12 through nuclear factor kappa light chain enhancer of activated B cells (NF-κB) activity. PKA and CREB are primary regulators of anti-inflammatory and immune response. Our results thus demonstrate TCDCA plays an essential anti-inflammatory role via the signaling pathway of cAMP-PKA-CREB induced by TGR5 receptor.
Animals
;
Cell Line
;
Cyclic AMP/metabolism*
;
Cyclic AMP Response Element-Binding Protein/metabolism*
;
Cyclic AMP-Dependent Protein Kinases/metabolism*
;
Cytokines/metabolism*
;
Humans
;
Inflammation
;
Macrophages
;
Rats
;
Receptors, G-Protein-Coupled/metabolism*
;
Signal Transduction/drug effects*
;
Taurochenodeoxycholic Acid/pharmacology*
9.Expression of CREB in children with recurrent wheezing and its effect on ORMDL3 gene expression.
Rui JIN ; Zhen-Xing ZHANG ; Liang-Hua ZHU ; Li-Li ZHUANG ; Xiao-Qing CHEN
Chinese Journal of Contemporary Pediatrics 2020;22(9):980-983
OBJECTIVE:
To study the expression level of cAMP response element-binding protein (CREB) in children with recurrent wheezing under three years of age and its effect on the expression of the serum orosomucoid 1-like protein 3 (ORMDL3) gene.
METHODS:
Thirty-six children with recurrent wheezing under three years of age who visited the hospital from June 2017 to June 2019 were selected as the recurrent wheezing group. Twenty-four healthy children from physical examination were selected as the control group. The CREB expression level in peripheral blood was measured by quantitative real-time PCR. Human bronchial epithelial cells (BEAS-2B) were cultured, and dual-luciferase reporter assay and quantitative real-time PCR were used to investigate the effects of overexpression and siRNA interference of CREB on the promoter activity and mRNA expression of the ORMDL3 gene in the BEAS-2B cells.
RESULTS:
The expression level of CREB in the recurrent wheezing group was significantly higher than that in the control group (P<0.001). In BEAS-2B cells, overexpression of CREB significantly up-regulated the promoter activity and mRNA expression of the ORMDL3 gene (P<0.05), while siRNA interference of CREB significantly reduced the promoter activity and mRNA expression of the ORMDL3 gene (P<0.05).
CONCLUSIONS
The expression of CREB is increased in children with recurrent wheezing, and CREB may be involved in the pathogenesis of recurrent wheezing by regulating expression of the ORMDL3 gene.
Child, Preschool
;
Cyclic AMP Response Element-Binding Protein
;
Epithelial Cells
;
Humans
;
Membrane Proteins
;
genetics
;
Promoter Regions, Genetic
;
Respiratory Sounds
10.Inhibition of MicroRNA 219 Expression Protects Synaptic Plasticity Activating NMDAR1, CaMKIIγ, and p-CREB after Microwave Radiation.
Li ZHAO ; Lu XIONG ; Yan Hui HAO ; Wen Chao LI ; Ji DONG ; Jing ZHANG ; Bin Wei YAO ; Xin Ping XU ; Li Feng WANG ; Hong Mei ZHOU ; Rui Yun PENG
Biomedical and Environmental Sciences 2020;33(5):359-364
Animals
;
Calcium-Calmodulin-Dependent Protein Kinase Type 2
;
genetics
;
metabolism
;
Cyclic AMP Response Element-Binding Protein
;
genetics
;
metabolism
;
Male
;
MicroRNAs
;
radiation effects
;
Microwaves
;
adverse effects
;
Neuronal Plasticity
;
radiation effects
;
Random Allocation
;
Rats
;
Rats, Wistar
;
Receptors, N-Methyl-D-Aspartate
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail