1.Effect of HPMCAS/curcumin amorphous solid dispersion in enhancing dissolution and chemical stability of curcumin.
Qi LIANG ; Yi-Ru WANG ; Yue-Yi DENG
China Journal of Chinese Materia Medica 2019;44(15):3305-3311
		                        		
		                        			
		                        			To enhance in vitro dissolution of Cur by preparing Cur solid dispersions. The ability of HPMCAS-HF,HPMCAS-MF,HPMCAS-LF and PVPK30 to maintain supersaturated solution was investigated by supersaturation test. Amorphous solid dispersions were prepared by the solvent-evaporation method. The prepared samples were characterized using infrared spectroscopy( IR) and differential scanning calorimetry( DSC),and in vitro dissolution was investigated. DSC and IR results showed that in 1 ∶3 and 1 ∶9 solid dispersions,Cur was amorphously dispersed in the carrier,and the interaction existed between drug and carrier. The supersaturation test showed that the order of the ability of polymer to inhibit crystallization of Cur was MF>HF>LF>K30. The dissolution results showed that Cur-K30 amorphous solid dispersion had the highest drug release rate; Cur-K30 and Cur-LF amorphous solid dispersions had a quicker but not stable dissolution rate,and the drug concentration decrease after 4 h; Cur-MF and Cur-HF solid dispersions had a low dissolution,which however increased steadily,attributing to the strong ability of the polymers to inhibit the crystallization of Cur. HPMCAS could inhibit the degradation of Cur better than K30,especially MF and HF. The amorphous solid dispersions of cur significantly enhanced the dissolution of Cur and improved the chemical stability of Cur. This study can provide a basis for the rational selection of the polymer used for Cur solid dispersion.
		                        		
		                        		
		                        		
		                        			Chemistry, Pharmaceutical
		                        			;
		                        		
		                        			Curcumin
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Drug Stability
		                        			;
		                        		
		                        			Methylcellulose
		                        			;
		                        		
		                        			analogs & derivatives
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Polymers
		                        			;
		                        		
		                        			Solubility
		                        			
		                        		
		                        	
2.Intervention of curcumin and its analogue J7 on oxidative stress injury in testis of type 2 diabetic rats.
Fei Fei XU ; Cheng Feng MIAO ; Chen CHI ; Gu WU ; Guo Rong CHEN
Chinese Journal of Applied Physiology 2019;35(2):145-149
		                        		
		                        			OBJECTIVE:
		                        			To investigate the intervention of curcumin and its analogue J7 on oxidative stress injury in testis of type 2 diabetic rats.
		                        		
		                        			METHODS:
		                        			Sixty male SD rats, 10 rats were chosen as normal control group (NC), the other 50 rats were assigned to experiment group. Experiment diabetic rats were induced by high-fat food and intraperitoneal injection of steptozotocin (STZ). After the model was established successfully, diabetic rats were divided into four groups randomly: diabetes mellitus group (DM, n=12), curcumin treatment group (CUR, n=10), high dose treatment group of J7 (J+, n=10), low dose treatment group of J7 (J-, n=10). The CUR group were intragastrically administered with curcumin 20 mg/kg daily, in addition, the J+ group and the J- group were intragastrically administered with J7 20 mg/kg and 10 mg/kg daily respectively. After 8 weeks, the fast blood glucose was detected biochemically. The activity of superoxide dismutase (SOD) and the level of malondialdehyde (MDA) were detected by hydroxylamine method and thiobarbituric acid method respectively. The protein expressions of the nuclear factor-erythroid 2-related factor 2 (tNrf2), phosphorylation of Nrf2 (pNrf2), catalase (CAT), NAD(P)H quinine oxidoreductase 1 (NQO1) were measured by Western blot. The mRNA expressions of CAT, NQO1, hemeoxygenase-1 (HO1) were measured by quantitative real-time PCR (qRT-PCR). Morphological structure of testis was observed by hematoxylin-eosin (HE) staining. The expressions of Nrf2 and CAT were also detected by immunohistochemical method.
		                        		
		                        			RESULTS:
		                        			The levels of fast blood glucose and MDA in DM group were increased significantly(P<0.05), while the body weight, the activity of SOD, the protein expressions of pNrf2/tNrf2, CAT, NQO1 and the mRNA expressions of CAT, NQO1, HO1 were decreased (P<0.05). Under light microscope, the DM group showed disrupted histological appearance. Immunohistochemistry showed that the protein expressions of Nrf2 around the nucleus and CAT were decreased. With the treatment of curcumin and J7, the MDA levels in the three treatment groups were decreased (P<0.05). The activity of SOD, the protein expressions of pNrf2/tNrf2, CAT, NQO1 and the mRNA expressions of NQO1, HO1 were increased (P<0.05). the levels of fast blood glucose were decreased in the J+ and J- group (P<0.05), and the mRNA expression of CAT was increased in the J+ group (P<0.05). The ratio of pNrf2/tNrf2 in the J+ group was significantly higher than that in CUR and J- group (P<0.05). The protein level of CAT in the J+ group was also significantly higher than that in J- group (P<0.05). There were no significant differences in other indexes among the three treatment groups. Under light microscope, the morphology was obviously improved in the three treatment groups. Immunohistochemistry showed that the protein expressions of Nrf2 around the nucleus and CAT were increased in the three treatment groups. It was suggested that high dose J7 had better antioxidant stress ability in testis of diabetic rats.
		                        		
		                        			CONCLUSION
		                        			Curcumin and J7 could inhibit the oxidative stress damage of testicular tissue in diabetic rats, which might be related with the activation of the Nrf2-ARE signaling pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Blood Glucose
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Curcumin
		                        			;
		                        		
		                        			analogs & derivatives
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Diabetes Mellitus, Experimental
		                        			;
		                        		
		                        			Diabetes Mellitus, Type 2
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Malondialdehyde
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			NF-E2-Related Factor 2
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			Random Allocation
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Superoxide Dismutase
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Testis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			pathology
		                        			
		                        		
		                        	
3.Evidence against the participation of a pharmacokinetic interaction in the protective effect of single-dose curcumin against gastrointestinal damage induced by indomethacin in rats.
Liliana ZAZUETA-BELTRÁN ; Lorena MEDINA-AYMERICH ; Nadia Estela DÍAZ-TRISTE ; Aracely Evangelina CHÁVEZ-PIÑA ; Gilberto CASTAÑEDA-HERNÁNDEZ ; Leticia CRUZ-ANTONIO
Journal of Integrative Medicine 2017;15(2):151-157
OBJECTIVETo determine the role of a pharmacokinetic interaction in the protective effect of curcumin against the gastric damage induced by indomethacin administration as such or as its prodrug acemetacin.
METHODSWistar rats orally received single dose of indomethacin (30 mg/kg) with and without curcumin (30 mg/kg); gastric injury was evaluated by determining the total damaged area. Additional groups of rats received an oral single dose of indomethacin (30 mg/kg) or its prodrug acemetacin (34.86 mg/kg) in the presence or absence of curcumin (30 mg/kg). Indomethacin and acemetacin concentrations in plasma from blood draws were determined by high-performance liquid chromatography.Plasma concentration-against-time curves were constructed, and bioavailability parameters, maximal concentration (C) and area under the curve to the last sampling time (AUC) were estimated.
RESULTSConcomitant administration of indomethacin and curcumin resulted in a significantly reduced gastric damage compared to indomethacin alone. However, co-administration of curcumin did not produce any significant alteration in the bioavailability parameters of indomethacin and acemetacin after administration of either the active compound or the prodrug.
CONCLUSIONCurcumin exhibits a protective effect against indomethacin-induced gastric damage, but does not produce a reduction of the bioavailability of this nonsteroidal anti-inflammatory drug, indomethacin. Data thus suggest that a pharmacokinetic mechanism of action is not involved in curcumin gastroprotection.
Animals ; Biological Availability ; Curcumin ; pharmacology ; Drug Interactions ; Indomethacin ; analogs & derivatives ; pharmacokinetics ; toxicity ; Male ; Rats ; Rats, Wistar
4.Study on anti-angiogenesis effect of three curcumin pigments and expression of their relevant factors.
Yan-fen HUANG ; Xue-xin ZHU ; Zhi-shan DING ; Gui-yuan LV
China Journal of Chinese Materia Medica 2015;40(2):324-329
		                        		
		                        			
		                        			To study the in vitro anti-angiogenesis effect of three curcumin pigments (curcumin, demethoxycurcumin, bisdemethoxycurcumin). In the study, the inhibitory effect of the three curcumin pigments on proliferation of HUVEC cells induced by OX-LDL and the effect on migration of HUVEC cells were detected. The effect on neovascularization was observed by chorioallantoic membrane (CAM) test. The effect on cell adhesion factors ICAM-1 and VCAM-1 of HUVECs were tested by Real-time RT-PCR. It was found that the three curcumins could inhibit the proliferation of HUVEC cells induced by OX-LDL within the dosage range 4, 8, 16 mg x L(-1), with a dose-dependence. The proliferative effect of curcumins on HUVECs was greater than the other two derivatives (P < 0.01). All of the three curcumin pigments inhibited the migration of HUVEC cells and the angiogenesis of chick chorioallantoic membrane (CAM). The migration inhibition rate of curcumins at middle and high concentrations was greater than the other two (P < 0.01). All of the three curcumin could down-regulate the expression of VEGF and ICAM-1, and curcumins showed more obvious effect in down-regulating VEGF than demethoxycurcumin and bisdemethoxycurcumin(P < 0.01); Bisdemethoxycurcumin showed the most significant effect in down-regulating ICAM-1 (P < 0.01). All of the three showed no remarkable effect on expression of VCAM-1, and only bisdemethoxycurcumin showed the down-regulating effect (P < 0.05). According to the findings, all of the three curcumin pigments could resist angiogenesis by inhibiting proliferation and migration of endothelial cells and down-regulating the expression of VEGF and adhesion molecules ICAM-1.
		                        		
		                        		
		                        		
		                        			Angiogenesis Inhibitors
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Chorioallantoic Membrane
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Curcumin
		                        			;
		                        		
		                        			analogs & derivatives
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Intercellular Adhesion Molecule-1
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Vascular Cell Adhesion Molecule-1
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Vascular Endothelial Growth Factor A
		                        			;
		                        		
		                        			genetics
		                        			
		                        		
		                        	
5.Preparation of curcumin-EC sustained-release composite particles by supercritical CO2 anti-solvent technology.
Wei-li BAI ; Ting-yuan YAN ; Zhi-xiang WANG ; De-chun HUANG ; Ting-xuan YAN ; Ping LI
China Journal of Chinese Materia Medica 2015;40(2):226-230
		                        		
		                        			
		                        			Curcumin-ethyl-cellulose (EC) sustained-release composite particles were prepared by using supercritical CO2 anti-solvent technology. With drug loading and yield of inclusion complex as evaluation indexes, on the basis of single factor tests, orthogonal experimental design was used to optimize the preparation process of curcumin-EC sustained-release composite particles. The experiments such as drug loading, yield, particle size distribution, electron microscope analysis (SEM) , infrared spectrum (IR), differential scanning calorimetry (DSC) and in vitro dissolution were used to analyze the optimal process combination. The orthogonal experimental optimization process conditions were set as follows: crystallization temperature 45 degrees C, crystallization pressure 10 MPa, curcumin concentration 8 g x L(-1), solvent flow rate 0.9 mL x min(-1), and CO2 velocity 4 L x min(-1). Under the optimal conditions, the average drug loading and yield of curcumin-EC sustained-release composite particles were 33.01% and 83.97%, and the average particle size of the particles was 20.632 μm. IR and DSC analysis showed that curcumin might complex with EC. The experiments of in vitro dissolution showed that curcumin-EC composite particles had good sustained-release effect. Curcumin-EC sustained-release composite particles can be prepared by supercritical CO2 anti-solvent technology.
		                        		
		                        		
		                        		
		                        			Carbon Dioxide
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Cellulose
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			analogs & derivatives
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Curcumin
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Delayed-Action Preparations
		                        			;
		                        		
		                        			Solubility
		                        			;
		                        		
		                        			Solvents
		                        			;
		                        		
		                        			Technology, Pharmaceutical
		                        			
		                        		
		                        	
6.Autophagy Accompanied with Bisdemethoxycurcumin-induced Apoptosis in Non-small Cell Lung Cancer Cells.
Jin Hong XU ; He Ping YANG ; Xiang Dong ZHOU ; Hai Jing WANG ; Liang GONG ; Chun Lan TANG
Biomedical and Environmental Sciences 2015;28(2):105-115
OBJECTIVETo investigate the effects of bisdemethoxycurcumin (BDMC) on non-small cell lung cancer (NSCLC) cell line, A549, and the highly metastatic lung cancer 95D cells.
METHODSCCK-8 assay was used to assess the effect of BDMC on cytotoxicity. Flow cytometry was used to evaluate apoptosis. Western blot analysis, electron microscopy, and quantification of GFP-LC3 punctuates were used to test the effect of BDMC on autophagy and apoptosis of lung cancer cells.
RESULTSBDMC inhibited the viability of NSCLC cells, but had no cytotoxic effects on lung small airway epithelial cells (SAECs). The apoptotic cell death induced by BDMC was accompanied with the induction of autophagy in NSCLC cells. Blockage of autophagy by the autophagy inhibitor 3-methyladenine (3-MA) repressed the growth inhibitory effects and induction of apoptosis by BDMC. In addition, BDMC treatment significantly decreased smoothened (SMO) and the transcription factor glioma-associated oncogene 1 (Gli1) expression. Furthermore, depletion of Gli1 by siRNA and cyclopamine (a specific SMO inhibitor) induced autophagy.
CONCLUSIONAberrant activation of Hedgehog (Hh) signaling has been implicated in several human cancers, including lung cancers. The present findings provide direct evidence that BDMC-induced autophagy plays a pro-death role in NSCLC, in part, by inhibiting Hedgehog signaling.
Antineoplastic Agents ; pharmacology ; Apoptosis ; drug effects ; Autophagy ; drug effects ; Carcinoma, Non-Small-Cell Lung ; drug therapy ; Cell Line, Tumor ; Curcumin ; analogs & derivatives ; chemistry ; pharmacology ; Down-Regulation ; Gene Expression Regulation, Neoplastic ; drug effects ; Hedgehog Proteins ; genetics ; metabolism ; Humans ; Kruppel-Like Transcription Factors ; genetics ; metabolism ; Signal Transduction ; drug effects ; Zinc Finger Protein GLI1
7.Role of Wnt Inhibitory Factor-1 in Inhibition of Bisdemethoxycurcumin Mediated Epithelial-to-Mesenchymal Transition in Highly Metastatic Lung Cancer 95D Cells.
Jin-Hong XU ; He-Ping YANG ; Xiang-Dong ZHOU ; Hai-Jing WANG ; Liang GONG ; Chun-Lan TANG
Chinese Medical Journal 2015;128(10):1376-1383
BACKGROUNDBisdemethoxycurcumin (BDMC) is an active component of curcumin and a chemotherapeutic agent, which has been suggested to inhibit tumor growth, invasion and metastasis in multiple cancers. But its contribution and mechanism of action in invasion and metastasis of non-small cell lung cancer (NSCLC) are not very clear. Therefore, we tried to study the effects of BDMC on regulation of epithelial-to-mesenchymal transition (EMT), which is closely linked to tumor cell invasion and metastasis.
METHODSIn this study, we first induced transforming growth factor-β1 (TGF-β1) mediated EMT in highly metastatic lung cancer 95D cells. Thereafter, we studied the effects of BDMC on invasion and migration of 95D cells. In addition, EMT markers expressions were also analyzed by western blot and immunofluorescence assays. The contribution of Wnt inhibitory factor-1 (WIF-1) in regulating BDMC effects on TGF-β1 induced EMT were further analyzed by its overexpression and small interfering RNA knockdown studies.
RESULTSIt was observed that BDMC inhibited the TGF-β1 induced EMT in 95D cells. Furthermore, it also inhibited the Wnt signaling pathway by upregulating WIF-1 protein expression. In addition, WIF-1 manipulation studies further revealed that WIF-1 is a central molecule mediating BDMC response towards TGF-β1 induced EMT by regulating cell invasion and migration.
CONCLUSIONSOur study concluded that BDMC effects on TGF-β1 induced EMT in NSCLC are mediated through WIF-1 and elucidated a novel mechanism of EMT regulation by BDMC.
Adaptor Proteins, Signal Transducing ; genetics ; metabolism ; Blotting, Western ; Cell Line, Tumor ; Cell Movement ; drug effects ; genetics ; Curcumin ; analogs & derivatives ; pharmacology ; Epithelial-Mesenchymal Transition ; drug effects ; genetics ; Humans ; Lung Neoplasms ; metabolism ; Repressor Proteins ; genetics ; metabolism ; Reverse Transcriptase Polymerase Chain Reaction
8.Synthesis of novel curcumin mimics and preliminary evaluation for their antitumor activity.
Yong-Cheng WANG ; Yu-Shan LI ; Han-Ze YANG ; Yan LI ; Xiao-Guang CHEN ; Zhi-Qiang FENG
Acta Pharmaceutica Sinica 2014;49(7):1022-1028
		                        		
		                        			
		                        			Curcumin has been reported to possess antitumor activity with low toxicity. However, the clinical application of curcumin has been significantly limited by its instability and poor metabolic property. In order to overcome these limitations and discover novel small molecules with potential antitumor activity, 29 curcumin mimics were synthesized, which were confirmed by 1H NMR and HR-MS, and their cytotoxic property was evaluated against five human cancer cell lines in vitro. Compounds 16, 18 and 19 exhibited good cytotoxic property, their IC50 value were even below 5 micromol x L(-1) to some cancer cell lines, 5-9 times better than curcumin.
		                        		
		                        		
		                        		
		                        			Antineoplastic Agents
		                        			;
		                        		
		                        			chemical synthesis
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Curcumin
		                        			;
		                        		
		                        			analogs & derivatives
		                        			;
		                        		
		                        			chemical synthesis
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Drug Screening Assays, Antitumor
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Inhibitory Concentration 50
		                        			
		                        		
		                        	
9.Dynamic accumulation regulation of curcumin, demethoxycurcumin and bisdemethoxyeurcumin in three strains of curcuma longae rhizome.
Qing-Miao LI ; Wen-Yu YANG ; Xue-Mei TANG ; Mei ZHANG ; Xian-Jian ZHOU ; Guang-Ming SHU ; Jun-Ning ZHAO ; Qing-Mao FANG
China Journal of Chinese Materia Medica 2014;39(11):2000-2004
		                        		
		                        			
		                        			The paper is aimed to study the dynamic accumulation regulation of curcumin (Cur), demethoxycurcumin (DMC) and bisdemethoxyeurcumin (BDMC) in three strains of Curcuma longa, and provide scientific references for formalized cultivation, timely harvesting, quality control and breeding cultivation of C. longa. The accumulation regulation of the three curcumin derivatives was basically the same in rhizome of three strains. The relative contents decreased along with plant development growing, while the accumulation per hectare increased with plant development growing. The accumulation of curcuminoids per hectare could be taken as the assessment standard for the best harvest time of C. longa. A3 was the best strain in terms of Cur and BDMC content.
		                        		
		                        		
		                        		
		                        			Curcuma
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Curcumin
		                        			;
		                        		
		                        			analogs & derivatives
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Quality Control
		                        			;
		                        		
		                        			Rhizome
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
10.Potent anti-angiogenic activity of B19--a mono-carbonyl analogue of curcumin.
Li SUN ; Jin LIU ; Sen-Sen LIN ; Wen-Ting SHI ; Jing ZHU ; Guang LIANG ; Sheng-Tao YUAN
Chinese Journal of Natural Medicines (English Ed.) 2014;12(1):8-14
		                        		
		                        			AIM:
		                        			The compound B19 (C21H22O5) is a newly synthesized, mono-carbonyl analog of curcumin that has exhibited potential antitumor effects. This present study was performed to identify the anti-angiogenic activity of this compound.
		                        		
		                        			METHODS AND RESULTS:
		                        			B19 inhibited migration and tube formation of human umbilical vein endothelial cells, and arrested microvessel outgrowth from rat aortic rings. In addition, B19 suppressed the neovascularization of chicken chorioallantoic membrane. Mechanistic studies revealed that B19 suppressed the downstream protein kinase activation of vascular endothelial growth factor (VEGF) by decreasing phosphorylated forms of serine/threonine kinase Akt, extracellular signal-regulated kinase, and p38 mitogen-activated protein kinase, with or without stimulating vascular endothelial growth factor (VEGF).
		                        		
		                        			CONCLUSIONS
		                        			B19 exerted anti-angiogenic activity in vitro and ex vivo, which suggests that it merits further investigation as a promising anticancer angiogenesis compound.
		                        		
		                        		
		                        		
		                        			Angiogenesis Inhibitors
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Aorta
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Curcumin
		                        			;
		                        		
		                        			analogs & derivatives
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Extracellular Signal-Regulated MAP Kinases
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Human Umbilical Vein Endothelial Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			In Vitro Techniques
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Vascular Endothelial Growth Factor A
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Vascular Endothelial Growth Factor Receptor-2
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail