1.p66shc deficiency attenuates high glucose-induced autophagy dysfunction in Schwann cells
Su-Jeong CHOI ; Giang-Huong VU ; Harsha NAGAR ; Seonhee KIM ; Ikjun LEE ; Shuyu PIAO ; Byeong Hwa JEON ; Kaikobad IRANI ; Sang-Ha OH ; Cuk-Seong KIM
The Korean Journal of Physiology and Pharmacology 2025;29(1):57-66
		                        		
		                        			
		                        			 Schwann cells are the most abundant cells in the peripheral nervous system, maintaining the development, function and regeneration of peripheral nerves. Defects in these Schwann cells injury response potentially contribute to the pathogenesis of diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus. The protein p66shc is essential in regulating oxidative stress responses, autophagy induction and cell survival, and is also vital in the development of DPN. In this study, we hypothesized that p66shc mediates high glucose-induced oxidative stress and autophagic dysfunction. In Schwann cells treated with high glucose; p66shc expression, levels of reactive oxygen species, autophagy impairment, and early apoptosis were elevated. Inhibition of p66shc gene expression by siRNA reversed high glucose-induced oxidative stress, autophagy impairment, and early apoptosis. We also demonstrated that the levels of p66shc was increased, while autophagy-related proteins p62 and LC3 (LC3-II/I) were suppressed in the sciatic nerve of streptozotocin-induced diabetes mice. P66shc-deficient mice exhibited the improvement in autophagy impairment after diabetes onset. Our findings suggest that the p66 plays a crucial role in Schwann cell dysfunction, identifying its potential as a therapeutic target. 
		                        		
		                        		
		                        		
		                        	
2.Aspirin-induced acetylation of APE1/Ref-1 enhances RAGE binding and promotes apoptosis in ovarian cancer cells
Hao JIN ; Yu Ran LEE ; Sungmin KIM ; Eun-Ok LEE ; Hee Kyoung JOO ; Heon Jong YOO ; Cuk-Seong KIM ; Byeong Hwa JEON
The Korean Journal of Physiology and Pharmacology 2025;29(3):293-305
		                        		
		                        			
		                        			 The role of acetylated apurinic/apyrimidinic endonuclease 1/redox factor 1 (APE1/Ref-1) in ovarian cancer remains poorly understood. Therefore, this study aimed to investigate the combined effect of recombinant human APE1/Ref-1 (rhAPE1/Ref-1) and aspirin (ASA) on two ovarian cancer cells, PEO-14, and CAOV3.The viability and apoptosis of ovarian cancer cells treated with rhAPE1/Ref-1 or ASA were assessed. Our results demonstrated that ASA induced rhAPE1/Ref-1 acetylation and widespread hyperacetylation in PEO-14 cells. Additionally, co-treatment with rhAPE1/Ref-1 and ASA substantially reduced cell viability and induced PEO-14 cell apoptosis, not CAOV3, in a dose-dependent manner. ASA increased the expression and membrane localization of the receptor for advanced glycation endproducts (RAGEs). Acetylated APE1/Ref-1 showed enhanced binding to RAGEs. In contrast, RAGE knockdown reduced cell death and poly(ADP-ribose) polymerase cleavage caused by rhAPE1/Ref-1 and ASA combination treatment, highlighting the importance of the APE1/Ref-1-RAGE interaction in triggering apoptosis. Moreover, combination treatment with rhAPE1/Ref-1 and ASA effectively induced apoptosis in 3D spheroid cultures of PEO-14 cells, a model that better mimics the tumor microenvironment. These results demonstrate that acetylated APE1/Ref-1 and its interaction with RAGE is a potential therapeutic target for ovarian cancer. Thus, the combination of ASA and APE1/Ref-1 may offer a promising new strategy for inducing cancer cell death. 
		                        		
		                        		
		                        		
		                        	
3.p66shc deficiency attenuates high glucose-induced autophagy dysfunction in Schwann cells
Su-Jeong CHOI ; Giang-Huong VU ; Harsha NAGAR ; Seonhee KIM ; Ikjun LEE ; Shuyu PIAO ; Byeong Hwa JEON ; Kaikobad IRANI ; Sang-Ha OH ; Cuk-Seong KIM
The Korean Journal of Physiology and Pharmacology 2025;29(1):57-66
		                        		
		                        			
		                        			 Schwann cells are the most abundant cells in the peripheral nervous system, maintaining the development, function and regeneration of peripheral nerves. Defects in these Schwann cells injury response potentially contribute to the pathogenesis of diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus. The protein p66shc is essential in regulating oxidative stress responses, autophagy induction and cell survival, and is also vital in the development of DPN. In this study, we hypothesized that p66shc mediates high glucose-induced oxidative stress and autophagic dysfunction. In Schwann cells treated with high glucose; p66shc expression, levels of reactive oxygen species, autophagy impairment, and early apoptosis were elevated. Inhibition of p66shc gene expression by siRNA reversed high glucose-induced oxidative stress, autophagy impairment, and early apoptosis. We also demonstrated that the levels of p66shc was increased, while autophagy-related proteins p62 and LC3 (LC3-II/I) were suppressed in the sciatic nerve of streptozotocin-induced diabetes mice. P66shc-deficient mice exhibited the improvement in autophagy impairment after diabetes onset. Our findings suggest that the p66 plays a crucial role in Schwann cell dysfunction, identifying its potential as a therapeutic target. 
		                        		
		                        		
		                        		
		                        	
4.Aspirin-induced acetylation of APE1/Ref-1 enhances RAGE binding and promotes apoptosis in ovarian cancer cells
Hao JIN ; Yu Ran LEE ; Sungmin KIM ; Eun-Ok LEE ; Hee Kyoung JOO ; Heon Jong YOO ; Cuk-Seong KIM ; Byeong Hwa JEON
The Korean Journal of Physiology and Pharmacology 2025;29(3):293-305
		                        		
		                        			
		                        			 The role of acetylated apurinic/apyrimidinic endonuclease 1/redox factor 1 (APE1/Ref-1) in ovarian cancer remains poorly understood. Therefore, this study aimed to investigate the combined effect of recombinant human APE1/Ref-1 (rhAPE1/Ref-1) and aspirin (ASA) on two ovarian cancer cells, PEO-14, and CAOV3.The viability and apoptosis of ovarian cancer cells treated with rhAPE1/Ref-1 or ASA were assessed. Our results demonstrated that ASA induced rhAPE1/Ref-1 acetylation and widespread hyperacetylation in PEO-14 cells. Additionally, co-treatment with rhAPE1/Ref-1 and ASA substantially reduced cell viability and induced PEO-14 cell apoptosis, not CAOV3, in a dose-dependent manner. ASA increased the expression and membrane localization of the receptor for advanced glycation endproducts (RAGEs). Acetylated APE1/Ref-1 showed enhanced binding to RAGEs. In contrast, RAGE knockdown reduced cell death and poly(ADP-ribose) polymerase cleavage caused by rhAPE1/Ref-1 and ASA combination treatment, highlighting the importance of the APE1/Ref-1-RAGE interaction in triggering apoptosis. Moreover, combination treatment with rhAPE1/Ref-1 and ASA effectively induced apoptosis in 3D spheroid cultures of PEO-14 cells, a model that better mimics the tumor microenvironment. These results demonstrate that acetylated APE1/Ref-1 and its interaction with RAGE is a potential therapeutic target for ovarian cancer. Thus, the combination of ASA and APE1/Ref-1 may offer a promising new strategy for inducing cancer cell death. 
		                        		
		                        		
		                        		
		                        	
5.p66shc deficiency attenuates high glucose-induced autophagy dysfunction in Schwann cells
Su-Jeong CHOI ; Giang-Huong VU ; Harsha NAGAR ; Seonhee KIM ; Ikjun LEE ; Shuyu PIAO ; Byeong Hwa JEON ; Kaikobad IRANI ; Sang-Ha OH ; Cuk-Seong KIM
The Korean Journal of Physiology and Pharmacology 2025;29(1):57-66
		                        		
		                        			
		                        			 Schwann cells are the most abundant cells in the peripheral nervous system, maintaining the development, function and regeneration of peripheral nerves. Defects in these Schwann cells injury response potentially contribute to the pathogenesis of diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus. The protein p66shc is essential in regulating oxidative stress responses, autophagy induction and cell survival, and is also vital in the development of DPN. In this study, we hypothesized that p66shc mediates high glucose-induced oxidative stress and autophagic dysfunction. In Schwann cells treated with high glucose; p66shc expression, levels of reactive oxygen species, autophagy impairment, and early apoptosis were elevated. Inhibition of p66shc gene expression by siRNA reversed high glucose-induced oxidative stress, autophagy impairment, and early apoptosis. We also demonstrated that the levels of p66shc was increased, while autophagy-related proteins p62 and LC3 (LC3-II/I) were suppressed in the sciatic nerve of streptozotocin-induced diabetes mice. P66shc-deficient mice exhibited the improvement in autophagy impairment after diabetes onset. Our findings suggest that the p66 plays a crucial role in Schwann cell dysfunction, identifying its potential as a therapeutic target. 
		                        		
		                        		
		                        		
		                        	
6.Aspirin-induced acetylation of APE1/Ref-1 enhances RAGE binding and promotes apoptosis in ovarian cancer cells
Hao JIN ; Yu Ran LEE ; Sungmin KIM ; Eun-Ok LEE ; Hee Kyoung JOO ; Heon Jong YOO ; Cuk-Seong KIM ; Byeong Hwa JEON
The Korean Journal of Physiology and Pharmacology 2025;29(3):293-305
		                        		
		                        			
		                        			 The role of acetylated apurinic/apyrimidinic endonuclease 1/redox factor 1 (APE1/Ref-1) in ovarian cancer remains poorly understood. Therefore, this study aimed to investigate the combined effect of recombinant human APE1/Ref-1 (rhAPE1/Ref-1) and aspirin (ASA) on two ovarian cancer cells, PEO-14, and CAOV3.The viability and apoptosis of ovarian cancer cells treated with rhAPE1/Ref-1 or ASA were assessed. Our results demonstrated that ASA induced rhAPE1/Ref-1 acetylation and widespread hyperacetylation in PEO-14 cells. Additionally, co-treatment with rhAPE1/Ref-1 and ASA substantially reduced cell viability and induced PEO-14 cell apoptosis, not CAOV3, in a dose-dependent manner. ASA increased the expression and membrane localization of the receptor for advanced glycation endproducts (RAGEs). Acetylated APE1/Ref-1 showed enhanced binding to RAGEs. In contrast, RAGE knockdown reduced cell death and poly(ADP-ribose) polymerase cleavage caused by rhAPE1/Ref-1 and ASA combination treatment, highlighting the importance of the APE1/Ref-1-RAGE interaction in triggering apoptosis. Moreover, combination treatment with rhAPE1/Ref-1 and ASA effectively induced apoptosis in 3D spheroid cultures of PEO-14 cells, a model that better mimics the tumor microenvironment. These results demonstrate that acetylated APE1/Ref-1 and its interaction with RAGE is a potential therapeutic target for ovarian cancer. Thus, the combination of ASA and APE1/Ref-1 may offer a promising new strategy for inducing cancer cell death. 
		                        		
		                        		
		                        		
		                        	
7.p66shc deficiency attenuates high glucose-induced autophagy dysfunction in Schwann cells
Su-Jeong CHOI ; Giang-Huong VU ; Harsha NAGAR ; Seonhee KIM ; Ikjun LEE ; Shuyu PIAO ; Byeong Hwa JEON ; Kaikobad IRANI ; Sang-Ha OH ; Cuk-Seong KIM
The Korean Journal of Physiology and Pharmacology 2025;29(1):57-66
		                        		
		                        			
		                        			 Schwann cells are the most abundant cells in the peripheral nervous system, maintaining the development, function and regeneration of peripheral nerves. Defects in these Schwann cells injury response potentially contribute to the pathogenesis of diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus. The protein p66shc is essential in regulating oxidative stress responses, autophagy induction and cell survival, and is also vital in the development of DPN. In this study, we hypothesized that p66shc mediates high glucose-induced oxidative stress and autophagic dysfunction. In Schwann cells treated with high glucose; p66shc expression, levels of reactive oxygen species, autophagy impairment, and early apoptosis were elevated. Inhibition of p66shc gene expression by siRNA reversed high glucose-induced oxidative stress, autophagy impairment, and early apoptosis. We also demonstrated that the levels of p66shc was increased, while autophagy-related proteins p62 and LC3 (LC3-II/I) were suppressed in the sciatic nerve of streptozotocin-induced diabetes mice. P66shc-deficient mice exhibited the improvement in autophagy impairment after diabetes onset. Our findings suggest that the p66 plays a crucial role in Schwann cell dysfunction, identifying its potential as a therapeutic target. 
		                        		
		                        		
		                        		
		                        	
8.Aspirin-induced acetylation of APE1/Ref-1 enhances RAGE binding and promotes apoptosis in ovarian cancer cells
Hao JIN ; Yu Ran LEE ; Sungmin KIM ; Eun-Ok LEE ; Hee Kyoung JOO ; Heon Jong YOO ; Cuk-Seong KIM ; Byeong Hwa JEON
The Korean Journal of Physiology and Pharmacology 2025;29(3):293-305
		                        		
		                        			
		                        			 The role of acetylated apurinic/apyrimidinic endonuclease 1/redox factor 1 (APE1/Ref-1) in ovarian cancer remains poorly understood. Therefore, this study aimed to investigate the combined effect of recombinant human APE1/Ref-1 (rhAPE1/Ref-1) and aspirin (ASA) on two ovarian cancer cells, PEO-14, and CAOV3.The viability and apoptosis of ovarian cancer cells treated with rhAPE1/Ref-1 or ASA were assessed. Our results demonstrated that ASA induced rhAPE1/Ref-1 acetylation and widespread hyperacetylation in PEO-14 cells. Additionally, co-treatment with rhAPE1/Ref-1 and ASA substantially reduced cell viability and induced PEO-14 cell apoptosis, not CAOV3, in a dose-dependent manner. ASA increased the expression and membrane localization of the receptor for advanced glycation endproducts (RAGEs). Acetylated APE1/Ref-1 showed enhanced binding to RAGEs. In contrast, RAGE knockdown reduced cell death and poly(ADP-ribose) polymerase cleavage caused by rhAPE1/Ref-1 and ASA combination treatment, highlighting the importance of the APE1/Ref-1-RAGE interaction in triggering apoptosis. Moreover, combination treatment with rhAPE1/Ref-1 and ASA effectively induced apoptosis in 3D spheroid cultures of PEO-14 cells, a model that better mimics the tumor microenvironment. These results demonstrate that acetylated APE1/Ref-1 and its interaction with RAGE is a potential therapeutic target for ovarian cancer. Thus, the combination of ASA and APE1/Ref-1 may offer a promising new strategy for inducing cancer cell death. 
		                        		
		                        		
		                        		
		                        	
9.p66shc deficiency attenuates high glucose-induced autophagy dysfunction in Schwann cells
Su-Jeong CHOI ; Giang-Huong VU ; Harsha NAGAR ; Seonhee KIM ; Ikjun LEE ; Shuyu PIAO ; Byeong Hwa JEON ; Kaikobad IRANI ; Sang-Ha OH ; Cuk-Seong KIM
The Korean Journal of Physiology and Pharmacology 2025;29(1):57-66
		                        		
		                        			
		                        			 Schwann cells are the most abundant cells in the peripheral nervous system, maintaining the development, function and regeneration of peripheral nerves. Defects in these Schwann cells injury response potentially contribute to the pathogenesis of diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus. The protein p66shc is essential in regulating oxidative stress responses, autophagy induction and cell survival, and is also vital in the development of DPN. In this study, we hypothesized that p66shc mediates high glucose-induced oxidative stress and autophagic dysfunction. In Schwann cells treated with high glucose; p66shc expression, levels of reactive oxygen species, autophagy impairment, and early apoptosis were elevated. Inhibition of p66shc gene expression by siRNA reversed high glucose-induced oxidative stress, autophagy impairment, and early apoptosis. We also demonstrated that the levels of p66shc was increased, while autophagy-related proteins p62 and LC3 (LC3-II/I) were suppressed in the sciatic nerve of streptozotocin-induced diabetes mice. P66shc-deficient mice exhibited the improvement in autophagy impairment after diabetes onset. Our findings suggest that the p66 plays a crucial role in Schwann cell dysfunction, identifying its potential as a therapeutic target. 
		                        		
		                        		
		                        		
		                        	
10.Aspirin-induced acetylation of APE1/Ref-1 enhances RAGE binding and promotes apoptosis in ovarian cancer cells
Hao JIN ; Yu Ran LEE ; Sungmin KIM ; Eun-Ok LEE ; Hee Kyoung JOO ; Heon Jong YOO ; Cuk-Seong KIM ; Byeong Hwa JEON
The Korean Journal of Physiology and Pharmacology 2025;29(3):293-305
		                        		
		                        			
		                        			 The role of acetylated apurinic/apyrimidinic endonuclease 1/redox factor 1 (APE1/Ref-1) in ovarian cancer remains poorly understood. Therefore, this study aimed to investigate the combined effect of recombinant human APE1/Ref-1 (rhAPE1/Ref-1) and aspirin (ASA) on two ovarian cancer cells, PEO-14, and CAOV3.The viability and apoptosis of ovarian cancer cells treated with rhAPE1/Ref-1 or ASA were assessed. Our results demonstrated that ASA induced rhAPE1/Ref-1 acetylation and widespread hyperacetylation in PEO-14 cells. Additionally, co-treatment with rhAPE1/Ref-1 and ASA substantially reduced cell viability and induced PEO-14 cell apoptosis, not CAOV3, in a dose-dependent manner. ASA increased the expression and membrane localization of the receptor for advanced glycation endproducts (RAGEs). Acetylated APE1/Ref-1 showed enhanced binding to RAGEs. In contrast, RAGE knockdown reduced cell death and poly(ADP-ribose) polymerase cleavage caused by rhAPE1/Ref-1 and ASA combination treatment, highlighting the importance of the APE1/Ref-1-RAGE interaction in triggering apoptosis. Moreover, combination treatment with rhAPE1/Ref-1 and ASA effectively induced apoptosis in 3D spheroid cultures of PEO-14 cells, a model that better mimics the tumor microenvironment. These results demonstrate that acetylated APE1/Ref-1 and its interaction with RAGE is a potential therapeutic target for ovarian cancer. Thus, the combination of ASA and APE1/Ref-1 may offer a promising new strategy for inducing cancer cell death. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail