1.Advances in Phytochemistry and Modern Pharmacology of Saposhnikovia Divaricata (Turcz.) Schischk.
Jun-Wen GAO ; Yang ZHAN ; Yun-He WANG ; Shu-Jie ZHAO ; Zhong-Ming HAN
Chinese journal of integrative medicine 2023;29(11):1033-1044
Saposhnikovia divaricata (Turcz.) Schischk (S. divaricata, Fangfeng) is a herb in the Apiaceae family, and its root has been used since the Western Han Dynasty (202 B.C.). Chromones and coumarins are the pharmacologically active substances in S. divaricata. Modern phytochemical and pharmacological studies have demonstrated their antipyretic, analgesic, anti-inflammatory, antioxidant, anti-tumor, and anticoagulant activities. Technological and analytical strategy theory advancements have yielded novel results; however, most investigations have been limited to the main active substances-chromones and coumarins. Hence, we reviewed studies related to the chemical composition and pharmacological activity of S. divaricata, analyzed the developing trends and challenges, and proposed that research should focus on components' synergistic effects. We also suggested that, the structure-effect relationship should be prioritized in advanced research.
Drugs, Chinese Herbal/pharmacology*
;
Coumarins/pharmacology*
;
Apiaceae/chemistry*
;
Chromones
2.Six new coumarins from the roots of Toddalia asiatica and their anti-inflammatory activities.
Haoxuan HE ; Niping LI ; Yunqi FAN ; Qian HUANG ; Jianguo SONG ; Lixia LV ; Fen LIU ; Lei WANG ; Qi WANG ; Jihong GU
Chinese Journal of Natural Medicines (English Ed.) 2023;21(11):852-858
We reported the discovery of six novel coumarins, toddasirins A-F (1-6), each endowed with modified isoprenyl or geranyl side chains, derived from the roots of Toddalia asiatica. Comprehensive structural elucidation was achieved through multispectroscopic analyses, single-crystal X-ray diffraction experiments, and advanced quantum mechanical electronic circular dichroism (ECD) calculations. Furthermore, the anti-inflammatory activity of these compounds was assessed. Notably, compounds 1-3 and 6 demonstrated notable inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 cells, with 50% inhibitory concentration (IC50) values of 3.22, 4.78, 8.90, and 4.31 μmol·L-1, respectively.
Mice
;
Animals
;
Coumarins/chemistry*
;
Rutaceae/chemistry*
;
Anti-Inflammatory Agents/pharmacology*
;
Plant Extracts/chemistry*
;
RAW 264.7 Cells
;
Nitric Oxide
;
Molecular Structure
3.One new coumarin from seeds of Herpetospermum pedunculosum.
Dan HUANG ; Ying-Xiong MA ; Lin WEI ; Yan SUN ; Qing-Hong ZENG ; Xiao-Zhong LAN ; Zhi-Hua LIAO ; Min CHEN
China Journal of Chinese Materia Medica 2021;46(10):2514-2518
This paper aims to investigate the chemical constituents of the seeds of Herpetospermum pedunculosum. One new coumarin and two known lignans were isolated from the ethanolic extract of the seeds of H. pedunculosum with thin layer chromatography(TLC), silica gel column chromatography, Sephedax LH-20 chromatography, Semi-preparative high performance liquid chromatography and recrystallization, etc. Their structures were elucidated as herpetolide H(1), phyllanglaucin B(2), and buddlenol E(3) by analysis of their physicochemical properties and spectral data. Among them, compound 1 was a new compound, and compounds 2 and 3 were isolated from this genus for the first time. In vitro anti-inflammatory activity test showed that herpetolide H had certain NO inhibitory activity for LPS-induced RAW 264.7 cells, with its IC_(50) value of(46.57±3.28) μmol·L~(-1).
Chromatography, High Pressure Liquid
;
Coumarins/pharmacology*
;
Cucurbitaceae
;
Lignans
;
Seeds
4.Phenylpropanoids from Zanthoxylum species and their pharmacological activities: a review.
Hai-Mei YUAN ; Lu QIU ; Yu SONG ; Liang ZOU ; Long-Fei YANG ; Qiang FU
China Journal of Chinese Materia Medica 2021;46(22):5760-5772
Phenylpropanoids are one of the major chemical constituents in Zanthoxylum species. They include simple phenylpropanoids, coumarins, and lignans and possess anti-tumor, anti-inflammatory, anti-platelet aggregation, anti-bacterial, anti-viral, insecticidal, and antifeedant activities. This review summarizes the chemical constituents and pharmacological activities from the Zanthoxylum plants in hopes of providing reference for the research and application of phenylpropanoids from this genus.
Anti-Inflammatory Agents/pharmacology*
;
Coumarins/pharmacology*
;
Lignans
;
Plant Extracts
;
Zanthoxylum
5.Preparation of herpetolide A nanosuspension lyophilized powder and evaluation of its anti-hepatitis B virus activity.
Yu-Ji ZHONG ; Qing-Chuan LIU ; Ting ZHANG ; Xiao LIU ; Li-Qiang WANG ; Hai-Long YUAN
China Journal of Chinese Materia Medica 2020;45(5):1076-1081
To prepare the herpetolide A nanosuspension lyophilized powder(HPA-NS-LP), in order to investigate its anti-hepatitis B virus(HBV) activity and the dissolution in vitro. Herpetolide A nanosuspension(HPA-NS) was prepared by ultrasonic precipitation method. The formulation and process of HPA-NS were optimized by the single factor experiment. Lyophilized powder(HPA-NS-LP) was prepared by freeze-drying method. Scanning electron microscopy was used to observe morphology of HPA-NS-LP. Paddle method was used to determinate the dissolution of HPT-NS-LP in vitro. The anti-HBV activity of herpetolide A coarse suspension lyophilized powder(HPA-CS-LP) and HPA-NS-LP was evaluated by HepG2.2.15 cell model. The mean particle size of optimized HPA-NS was(173.46±4.36) nm, with a polydispersity index of 0.110±0.012. After redispersion, the mean particle size and the polydispersity index of HPA-NS-LP increased, with changes within a rational range. Scanning electron microscopy showed that HPA-NS-LP was spherical in shape. Cumulative dissolution rate of HPA-NS-LP was more than 90% in 2 hours, which was higher than that of HPA-CS-LP. Both HPA-CS-LP and HPA-NS-LP could effectively inhibit the secretion of HepG2.2.15 cell antigens(HBsAg and HBeAg), and the inhibitory effect of HPA-NS-LP was significantly higher than that of HPA CS-LP(P<0.05). HBV-DNA test showed that high, medium and low-dose HPA-NS-LP(50, 25, 12.5 mg·kg~(-1)) significantly decreased the level of HBV-DNA(P<0.05), and the effect was better than that of the same dose of HPA-CS-LP(P<0.05). The results revealed that HPA-NS-LP exhibited anti-HBV activity in vitro, and its effect was superior to that of HPA-CS-LP.
Coumarins/pharmacology*
;
Cucurbitaceae/chemistry*
;
Hep G2 Cells
;
Hepatitis B virus/drug effects*
;
Humans
;
Nanoparticles
;
Particle Size
;
Phytochemicals/pharmacology*
;
Solubility
;
Suspensions
6.Ethnobotany, Phytochemistry, and Pharmacology of Angelica decursiva Fr. et Sav.
Md Yousof ALI ; Su Hui SEONG ; Susoma JANNAT ; Hyun Ah JUNG ; Jae Sue CHOI
Natural Product Sciences 2019;25(3):181-199
Angelica decursiva Fr. et Sav. (Umbelliferae) has traditionally been used to treat different diseases due to its antitussive, analgesic, and antipyretic activities. It is also a remedy for thick phlegm, asthma, and upper respiratory infections. Recently, the leaf of A. decursiva has been consumed as salad without showing any toxicity. This plant is a rich in different types of coumarin derivatives, including dihydroxanthyletin, psoralen, dihydropsoralen, hydroxycoumarin, and dihydropyran. Its crude extracts and pure constituents possess anti-inflammatory, anti-diabetic, anti-Alzheimer disease, anti-hypertension, anti-cancer, antioxidant, anthelmintic, preventing cerebral stroke, and neuroprotective activities. This valuable herb needs to be further studied and developed not only to treat these human diseases, but also to improve human health. This review provides an overview of current knowledge of A. decursiva metabolites and their biological activities to prioritize future studies.
Angelica
;
Apiaceae
;
Asthma
;
Complex Mixtures
;
Coumarins
;
Ethnobotany
;
Ficusin
;
Humans
;
Pharmacology
;
Plants
;
Respiratory Tract Infections
;
Stroke
7.Osthole suppresses amyloid precursor protein expression by up-regulating miRNA-101a-3p in Alzheimer's disease cell model.
Ying LIN ; Yingjia YAO ; Xicai LIANG ; Yue SHI ; Liang KONG ; Honghe XIAO ; Yutong WU ; Yingnan NI ; Jingxian YANG
Journal of Zhejiang University. Medical sciences 2018;47(5):473-479
OBJECTIVE:
To investigate the effect of osthole on the expression of amyloid precursor protein (APP) in Alzheimer's disease (AD) cell model and its mechanism.
METHODS:
The SH-SY5Y cell with over expression of APP was established by transfection by liposome 2000. The cells were treated with different concentrations of osthole, and the cell viability was determined by MTT and lactate dehydrogenase (LDH) assay. The differentially expressed miRNAs with and without osthole treatment were detected by miRNA array, and the target genes binding to the differentially expressed miRNAs were identified and verified by databases and Cytoscape. After the inhibitor of the differentially expressed miRNA was transduced into cells, the changes of APP and amyloid β (Aβ) protein were determined by immunofluorescence cytochemistry, and the mRNA expression of APP was determined by RT-PCR.
RESULTS:
The AD cell model with over expression of APP was established successfully. The results of MTT and LDH assay showed that osthole had a protective effect on cells and alleviated cell damage. miR-101a-3p was identified as the differentially expressed miRNA, which was binding to the 3'-UTR of APP. Compared with APP group, the expression of APP and Aβ protein and APP mRNA increased in the miR-101a-3p inhibitor group (all <0.01), while the expression of APP and Aβ protein and APP mRNA decreased in the cells with osthole treatment (all <0.01).
CONCLUSIONS
Osthole inhibits the expression of APP by up-regulating miR-101a-3p in AD cell model.
Alzheimer Disease
;
Amyloid beta-Peptides
;
Amyloid beta-Protein Precursor
;
genetics
;
Cell Line
;
Coumarins
;
pharmacology
;
Gene Expression Regulation
;
drug effects
;
genetics
;
Humans
;
MicroRNAs
;
genetics
;
metabolism
8.Osthole decreases collagen I/III contents and their ratio in TGF-β1-overexpressed mouse cardiac fibroblasts through regulating the TGF-β/Smad signaling pathway.
Jin-Cheng LIU ; Lei ZHOU ; Feng WANG ; Zong-Qi CHENG ; Chen RONG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(5):321-329
The present study was designed to elucidate whether the mechanism by which osthole decreases collagenI/III contents and their ratio is regulating the TGF-β/Smad signaling pathway in TGF-β1-overexpressed mouse cardiac fibroblasts (CFs). These CFs were cultured and treated with different concentrations of osthole. Our results showed that the TGF-β1 expression in the CFs transfected with that the recombinant expression plasmids pcDNA3.1(+)-TGF-β1 was significantly enhanced. After the CFs were treated with 1.25-5 μg·mL of osthole for 24 h, the mRNA and protein expression levels of collagensIand III were reduced. The collagen I/III ratio was also reduced. The mRNA and protein expression levels of TGF-β1, TβRI, Smad2/3, P-Smad2/3, Smad4, and α-SMA were decreased, whereas the expression level of Smad7 was increased. These effects suggested that osthole could inhibit collagen I and III expression and reduce their ratio via the TGF-β/Smad signaling pathway in TGF-β1 overexpressed CFs. These effects of osthole may play beneficial roles in the prevention and treatment of myocardial fibrosis.
Actins
;
genetics
;
Animals
;
Cells, Cultured
;
Collagen
;
biosynthesis
;
genetics
;
Coumarins
;
pharmacology
;
Fibroblasts
;
drug effects
;
metabolism
;
Gene Expression Regulation
;
drug effects
;
Mice
;
Myocardium
;
cytology
;
Protein-Serine-Threonine Kinases
;
genetics
;
RNA, Messenger
;
genetics
;
Real-Time Polymerase Chain Reaction
;
Receptor, Transforming Growth Factor-beta Type I
;
Receptors, Transforming Growth Factor beta
;
genetics
;
Signal Transduction
;
drug effects
;
Smad Proteins
;
genetics
;
Transforming Growth Factor beta1
;
genetics
9.Anticancer carbazole alkaloids and coumarins from Clausena plants: A review.
Li HUANG ; Zhe-Ling FENG ; Yi-Tao WANG ; Li-Gen LIN
Chinese Journal of Natural Medicines (English Ed.) 2017;15(12):881-888
Pharmaceutical research has focused on the discovery and development of anticancer drugs. Clinical application of chemotherapy drugs is limited due to their severe side effects. In this regard, new naturally occurring anticancer drugs have gained increasing attention because of their potential effectiveness and safety. Fruits and vegetables are promising sources of anticancer remedy. Clausena (family Rutaceae) is a genus of flowering plants and includes several kinds of edible fruits and vegetables. Phytochemical and pharmacological studies show that carbazole alkaloids and coumarins from Clausena plants exhibit anticancer activity. This review summarizes research progresses made in the anticancer properties of plants belonging to Clausena; in particular, compounds with direct cytotoxicity, cell cycle arrest, apoptosis induction, and immune potentiation effects are discussed. This review reveals the potential use of plants from Clausena in preventing and treating cancer and provides a basis for development of relevant therapeutic agents.
Alkaloids
;
chemistry
;
pharmacology
;
therapeutic use
;
Antineoplastic Agents
;
chemistry
;
pharmacology
;
therapeutic use
;
Apoptosis
;
drug effects
;
Carbazoles
;
chemistry
;
pharmacology
;
therapeutic use
;
Cell Cycle Checkpoints
;
drug effects
;
Clausena
;
chemistry
;
Coumarins
;
chemistry
;
pharmacology
;
therapeutic use
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
therapeutic use
;
Humans
;
Plants, Medicinal
;
chemistry
10.Effect of Osthole on Adrenocortical Function in Y1 Mouse Adrenocortical Tumor Cells.
Zhi-qiang PAN ; Long-long LIANG ; Zhao-qin FANG ; Xiao-mei LIU ; Wen-li LU ; Yuan-yuan ZHANG
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(5):574-579
OBJECTIVETo study the effect of osthole (Ost) on adrenocortical function in Y1 mouse adrenocortical tumor cells.
METHODSY1 mouse adrenocortical tumor cells were taken as subjects in this experiment. In 10.0%, 1.0%, and 0.1% serum DMEM-F12 medium, Y1 cells were treated with 1, 10, 25, 50, 100, and 200 micromol/L Ost for 24 and 48 h. 0.1% Dimethyl Sulfoxide (DMSO) was taken as negative control group and 1 mmol/L (Bu) 2cAMP as positive control group. Cell growth morphology was observed under inverted microscope. Contents of corticosterone were tested by ELISA. Expression levels of steroids synthase such as Star, Cyp11a1, Cyp21a1, Hsd3b2, Cyp11b1, Cyp11b2, Cyp17a1, and Hsd17b3 mRNA were detected by Real time quantitative PCR (RT-qPCR).
RESULTSY1 cell proliferation was obviously inhibited by 100 and 200 micromol/L Ost, and its inhibitory effect was more significant in 0.1% serum medium. Compared with the negative control group, gene expressions of Star, Cyp11a1 , Cyp21a1, Hsd3b2, Cyp11b1, Cyp17a1, and Hsd17b3 were significantly enhanced in the posi- tive control group (P < 0.05). Y1 cell corticosterone levels significantly increased in 50 micromol/L Ost treatment group after 24-and 48-h intervention (P < 0.05). Contents of corticosterone increased more obviously in 25 and 50 +/- mol/L Ost treatment groups after 48-h intervention, as compared with 24-h intervention (P < 0.01). After 24-h intervention, expression levels of Star, Cyp21a1, and Hsd3b2 genes were significantly up-regulated in 25 and 50 lLmol/L Ost groups (P < 0.05). Star gene expression was further enhanced after 48-h intervention (P < 0.05). However, Ost showed no effect on Cyp11a1 (P > 0.05). Additionally, gene expressions of Cyp11b1 and Cyp17a1 were significantly enhanced by 10, 25, and 50 pLmolIL Ost after treatment for 24 and 48 h (P < 0.05). Ost showed no obvious effect on Cyp11b2 and Hsd17b3 expressions.
CONCLUSIONOst could regulate adrenal cortex function and promote corticosterone synthesis and secretion through strengthening gene expressions of steroidogenic enzymes.
Adrenal Cortex ; drug effects ; Adrenal Cortex Neoplasms ; pathology ; Animals ; Corticosterone ; biosynthesis ; Coumarins ; pharmacology ; Gene Expression ; Mice ; RNA, Messenger ; metabolism ; Tumor Cells, Cultured

Result Analysis
Print
Save
E-mail