1.Ferulic acid enhances insulin secretion by potentiating L-type Ca2+ channel activation.
Katesirin RUAMYOD ; Wattana B WATANAPA ; Chanrit KAKHAI ; Pimchanok NAMBUNDIT ; Sukrit TREEWAREE ; Parin WONGSANUPA
Journal of Integrative Medicine 2023;21(1):99-105
OBJECTIVE:
To investigate the effect of ferulic acid, a natural compound, on pancreatic beta cell viability, Ca2+ channels, and insulin secretion.
METHODS:
We studied the effects of ferulic acid on rat insulinoma cell line viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide viability assay. The whole-cell patch-clamp technique and enzyme-linked immunosorbent assay were also used to examine the action of ferulic acid on Ca2+ channels and insulin secretion, respectively.
RESULTS:
Ferulic acid did not affect cell viability during exposures up to 72 h. The electrophysiological study demonstrated that ferulic acid rapidly and concentration-dependently increased L-type Ca2+ channel current, shifting its activation curve in the hyperpolarizing direction with a decreased slope factor, while the voltage dependence of inactivation was not affected. On the other hand, ferulic acid have no effect on T-type Ca2+ channels. Furthermore, ferulic acid significantly increased insulin secretion, an effect inhibited by nifedipine and Ca2+-free extracellular fluid, confirming that ferulic acid-induced insulin secretion in these cells was mediated by augmenting Ca2+ influx through L-type Ca2+ channel. Our data also suggest that this may be a direct, nongenomic action.
CONCLUSION
This is the first electrophysiological demonstration that acute ferulic acid treatment could increase L-type Ca2+ channel current in pancreatic β cells by enhancing its voltage dependence of activation, leading to insulin secretion.
Rats
;
Animals
;
Insulin Secretion
;
Insulin/pharmacology*
;
Insulin-Secreting Cells/metabolism*
;
Coumaric Acids/metabolism*
;
Calcium/metabolism*
2.Regulatory effects and signaling mechanism of sodium ferulate on the proliferation and apoptosis of human skin hypertrophic scar fibroblasts.
Chang WANG ; Wei CHEN ; Bao Jia WANG
Chinese Journal of Burns 2022;38(5):471-480
Objective: To investigate the regulatory effects and signaling mechanism of sodium ferulate on the proliferation and apoptosis of human skin hypertrophic scar fibroblasts (HSFbs). Methods: The experimental research methods were used. The 4th-6th passage of HSFbs from human skin were used for the following experiments. HSFbs were co-cultured with sodium ferulate at final mass concentrations of 1, 1×10-1, 1×10-2, 1×10-3, 1×10-4, 1×10-5, and 1×10-6 mg/mL for 48 hours, and methyl thiazolyl tetrazolium method was used to determine the cell absorbance values and linear regression was used to analyze the half lethal concentration (LC50) of sodium ferulate (n=6). HSFbs were co-cultured with sodium ferulate at final mass concentrations of 0.1, 0.2, 0.3, and 0.4 mg/mL for 24, 48, 72, and 96 hours, and methyl thiazolyl tetrazolium method was used to determine the cell absorbance values and the cell proliferation inhibition rate was calculated (n=3). According to the random number table, the cells were divided into 0.300 mg/mL sodium ferulate group, 0.030 mg/mL sodium ferulate group, 0.003 mg/mL sodium ferulate group treated with sodium ferulate at corresponding final mass concentrations, and negative control group without any treatment. After 72 hours of culture, the cell absorbance values were determined by methyl thiazolyl tetrazolium method (n=5), the microscopic morphology of cells was observed by transmission electron microscope (n=3), the cell apoptosis was detected by TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay and the apoptosis index was calculated (n=4), the protein expressions of B lymphocystoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and cysteine aspartic acid specific protease-3 (caspase-3) were determined by immunohistochemistry (n=4), and the protein expressions of transformed growth factor β1 (TGF-β1), phosphorylated Smad2/3, phosphorylated Smad4, and phosphorylated Smad7 were detected by Western blotting (n=4). Data were statistically analyzed with one-way analysis of variance and Dunnett test. Results: The LC50 of sodium ferulate was 0.307 5 mg/mL. After being cultured for 24-96 hours, the cell proliferation inhibition rates of cells treated with sodium ferulate at four different mass concentrations tended to increase at first but decrease later, which reached the highest after 72 hours of culture, so 72 hours was chosen as the processing time for the subsequent experiments. After 72 hours of culture, the cell absorbance values in 0.003 mg/mL sodium ferulate group, 0.030 mg/mL sodium ferulate group, and 0.300 mg/mL sodium ferulate group were 0.57±0.06, 0.53±0.04, 0.45±0.05, respectively, which were significantly lower than 0.69±0.06 in negative control group (P<0.01). After 72 hours of culture, compared with those in negative control group, the cells in the three groups treated with sodium ferulate showed varying degrees of nuclear pyknosis, fracture, or lysis, and chromatin loss. In the cytoplasm, mitochondria were swollen, the rough endoplasmic reticulum was expanded, and local vacuolation gradually appeared. After 72 hours of culture, compared with that in negative control group, the apoptosis indexes of cells were increased significantly in 0.003 mg/mL sodium ferulate group, 0.030 mg/mL sodium ferulate group, and 0.300 mg/mL sodium ferulate group (P<0.05 or P<0.01). After 72 hours of culture, compared with those in negative control group, the protein expressions of Bcl-2 of cells in 0.300 mg/mL sodium ferulate group was significantly decreased (P<0.01), the protein expressions of Bax of cells in 0.030 mg/mL sodium ferulate group and 0.300 mg/mL sodium ferulate group were significantly increased (P<0.05), and the protein expression of caspase-3 of cells in 0.300 mg/mL sodium ferulate group was significantly increased (P<0.01). After 72 hours of culture, compared with those in negative control group, the protein expression levels of TGF-β1, phosphorylated Smad2/3, and phosphorylated Smad4 of cells in 0.030 mg/mL sodium ferulate group and 0.300 mg/mL sodium ferulate group were significantly decreased (P<0.05 or P<0.01), and the protein expression levels of phosphorylated Smad7 of cells in 0.003 mg/mL sodium ferulate group, 0.030 mg/mL sodium ferulate group, and 0.300 mg/mL sodium ferulate group were significantly increased (P<0.01). Conclusions: Sodium ferulate can inhibit the proliferation of HSFbs of human skin and promote the apoptosis of HSFbs of human skin by blocking the expression of key proteins on the TGF-β/Smad signaling pathway and synergistically activating the mitochon- drial apoptosis pathway.
Apoptosis
;
Caspase 3/metabolism*
;
Cell Proliferation
;
Cicatrix, Hypertrophic/metabolism*
;
Coumaric Acids
;
Fibroblasts/metabolism*
;
Humans
;
Signal Transduction
;
bcl-2-Associated X Protein/pharmacology*
3.Antioxidant and Anti-inflammatory Capacity of Ferulic Acid Released from Wheat Bran by Solid-state Fermentation of Aspergillus niger.
Zhi Na YIN ; Wen Jia WU ; Chong Zhen SUN ; Hui Fan LIU ; Wen Bo CHEN ; Qi Ping ZHAN ; Zhuo Gui LEI ; Xuan XIN ; Juan Juan MA ; Kun YAO ; Tian MIN ; Meng Meng ZHANG ; Hui WU
Biomedical and Environmental Sciences 2019;32(1):11-21
OBJECTIVE:
A strain of Aspergillus niger (A. niger), capable of releasing bound phenolic acids from wheat bran, was isolated. This strain was identified by gene sequence identification. The antioxidant and anti-inflammatory capacity of ferulic acid released from wheat bran by this A. niger strain (FA-WB) were evaluated.
METHODS:
Molecular identification techniques based on PCR analysis of specific genomic sequences were conducted; antioxidant ability was examined using oxygen radical absorbance capacity (ORAC), cellular antioxidant activity (CAA) assays, and erythrocyte hemolysis assays. RAW264.7 cells were used as a model to detect anti-inflammatory activity.
RESULTS:
The filamentous fungal isolate was identified to be A. niger. ORAC and CAA assay showed that FA-WB had better antioxidant activity than that of the ferulic acid standard. The erythrocyte hemolysis assay results suggested that FA-WB could attenuate AAPH-induced oxidative stress through inhibition of reactive oxy gen species (ROS) generation. FA-WB could significantly restore the AAPH-induced increase in intracellular antioxidant enzyme activities to normal levels as well as inhibit the intracellular malondialdehyde formation. TNF-a, IL-6, and NO levels indicated that FA-WB can inhibit the inflammation induced by lipopolysaccharide (LPS).
CONCLUSION
Ferulic acid released from wheat bran by a new strain of A. niger had good anti-inflammatory activity and better antioxidant ability than standard ferulic acid.
Animals
;
Anti-Inflammatory Agents
;
metabolism
;
pharmacology
;
Antioxidants
;
metabolism
;
pharmacology
;
Aspergillus niger
;
genetics
;
isolation & purification
;
metabolism
;
Coumaric Acids
;
metabolism
;
pharmacology
;
DNA, Fungal
;
analysis
;
Dietary Fiber
;
microbiology
;
Erythrocytes
;
drug effects
;
metabolism
;
Fermentation
;
Hep G2 Cells
;
Humans
;
Interleukin-6
;
metabolism
;
Lipopolysaccharides
;
pharmacology
;
Mice
;
RAW 264.7 Cells
;
Sheep
;
Tumor Necrosis Factor-alpha
;
metabolism
4.Scavenging activity and mechanism study of ferulic acid against reactive carbonyl species acrolein.
Zhi-Hao TAO ; Chang LI ; Xiao-Fei XU ; Yuan-Jiang PAN
Journal of Zhejiang University. Science. B 2019;20(11):868-876
Acrolein, known as one of the most common reactive carbonyl species, is a toxic small molecule affecting human health in daily life. This study is focused on the scavenging abilities and mechanism of ferulic acid and some other phenolic acids against acrolein. Among the 13 phenolic compounds investigated, ferulic acid was found to have the highest efficiency in scavenging acrolein under physiological conditions. Ferulic acid remained at (3.04±1.89)% and acrolein remained at (29.51±4.44)% after being incubated with each other for 24 h. The molecular mechanism of the detoxifying process was also studied. Detoxifying products, namely 2-methoxy-4-vinylphenol (product 21) and 5-(4-hydroxy-3-methoxyphenyl)pent-4-enal (product 22), were identified though nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS), after the scavenging process. Ferulic acid showed significant activity in scavenging acrolein under physiological conditions. This study indicates a new method for inhibiting damage from acrolein.
Acrolein/toxicity*
;
Coumaric Acids/pharmacology*
;
Glutathione/physiology*
;
Hydroxybenzoates/pharmacology*
;
Magnetic Resonance Spectroscopy
;
Structure-Activity Relationship
5.An exploration in the action targets for antidepressant bioactive components of Xiaoyaosan based on network pharmacology.
Yao GAO ; Li GAO ; Xiao-xia GAO ; Yu-zhi ZHOU ; Xue-mei QIN ; Jun-sheng TIAN
Acta Pharmaceutica Sinica 2015;50(12):1589-1595
The present study aims to predict the action targets of antidepressant active ingredients of Xiaoyaosan to understand the "multi-components, multi-targets and multi-pathways" mechanism. Using network pharmacology, the reported antidepressant active ingredients in Xiaoyaosan (saikosaponin A, saikosaponin C, saikosaponin D, ferulic acid, Z-ligustilide, atractylenolide I, atractylenolide II, atractylenolide III, paeoniflorin, albiflorin, liquiritin, glycyrrhizic acid and pachymic acid), were used to predict the targets of main active ingredients of Xiaoyaosan according to reversed pharmacophore matching method. The prediction was made via screening of the antidepressive drug targets approved by FDA in the DrugBank database and annotating the information of targets with the aid of MAS 3.0 biological molecular function software. The Cytoscape software was used to construct the Xiaoyaosan ingredients-targets-pathways network. The network analysis indicates that the active ingredients in Xiaoyaosan involve 25 targets in the energy metabolism-immune-signal transmutation relevant biological processes. The antidepressant effect of Xiaoyaosan reflects the features of traditional Chinese medicine in multi-components, multi-targets and multi-pathways. This research provides a scientific basis for elucidation of the antidepressant pharmacological mechanism of Xiaoyaosan.
Antidepressive Agents
;
pharmacology
;
Benzoates
;
Bridged-Ring Compounds
;
Coumaric Acids
;
Drug Evaluation, Preclinical
;
Drugs, Chinese Herbal
;
pharmacology
;
Flavanones
;
Glucosides
;
Glycyrrhizic Acid
;
Lactones
;
Medicine, Chinese Traditional
;
Monoterpenes
;
Sesquiterpenes
;
Software
6.Study on compatibility of Salviae Miltiorrhizae Radix et Rhizoma and Chuanxiong Rhizoma based on pharmacokinetics of effective components salvianolic acid B and ferulic acid in rat plasma.
Cui-ying ZHANG ; Hong ZHANG ; Yu DONG ; Wei-guang REN ; Heng-wen CHEN
China Journal of Chinese Materia Medica 2015;40(8):1589-1593
A study was made on the pharmacokinetic regularity of effective components salvianolic acid B and ferulic acid in Salviae Miltiorrhizae Radix et Rhizoma (SMRR) and Chuanxiong Rhizoma(CR) in rats, so as to discuss the compatibility mechanism of Salviae Miltiorrhizae Radix et Rhizoma and Chuanxiong Rhizoma. Rats were randomly divided into three groups and intravenously injected with 50 mg x kg(-1) salvianolic acid B for the single SMRR extracts group, 0.5 mg x kg(-1) ferulic acid for the single CR extracts group and 50 mg x kg(-1) salvianolic acid B + 0.5 mg x kg(-1) ferulic acid for the SMRR and CR combination group. The blood samples were collected at different time points and purified by liquid-liquid extraction with ethyl acetate. With chloramphenicol as internal standard (IS), UPLC was adopted to determine concentrations of salvianolic acid B and ferulic acid. The pharmacokinetic parameters of salvianolic acid B and ferulic acid were calculated with WinNonlin 6.2 software and analyzed by SPSS 19.0 statistical software. The UPLC analysis method was adopted to determine salvianolic acid B and ferulic acid in rat plasma, including linear equation, stability, repeatability, precision and recovery. The established sample processing and analysis methods were stable and reliable, with significant differences in major pharmacokinetic parameters, e.g., area under the curve (AUC), mean residence time (MRT) and terminal half-life (t(1/2)). According to the experimental results, the combined application of SMRR and CR can significantly impact the pharmacokinetic process of their effective components in rats and promote the wide distribution, shorten the action time and prolong the in vivo action time of salvianolic acid B and increase the blood drug concentration and accelerate the clearance of ferulic acid in vivo.
Animals
;
Apiaceae
;
chemistry
;
Benzofurans
;
blood
;
pharmacokinetics
;
Coumaric Acids
;
blood
;
pharmacology
;
Drug Interactions
;
Drugs, Chinese Herbal
;
analysis
;
pharmacokinetics
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Rhizome
;
chemistry
;
Salvia miltiorrhiza
;
chemistry
7.Effect of ferulic acid on cholesterol efflux in macrophage foam cell formation and potential mechanism.
China Journal of Chinese Materia Medica 2015;40(3):533-537
The formation of macrophage-derived foam cells is a typical feature of atherosclerosis (AS). Reverse cholesterol efflux (RCT) is one of important factors for the formation of macrophage foam cells. In this study, macrophage form cells were induced by oxidized low density lipoprotein (ox-LDL) and then treated with different concentrations of ferulic acid, so as to observe the effect of ferulic acid on the intracellular lipid metabolism in the ox-LDL-induced macrophage foam cell formation, the cholesterol efflux and the mRNA expression and protein levels of ATP binding cassette transporter A1 (ABCA1) and ATP binding cassette transporter G1 (ABCG1) that mediate cholesterol efflux, and discuss the potential mechanism of ferulic acid in resisting AS. According to the findings, compared with the control group, the ox-LDL-treated group showed significant increase in intracellular lipid content, especially for the cholesterol content; whereas the intracellular lipid accumulation markedly decreased, after the treatment with ferulic acid. The data also demonstrated that the mRNA and protein expressions of ABCA1 and ABCG1 significantly increased after macrophage foam cells were treated with different concentrations of ferulic acid. In summary, ferulic acid may show the anti-atherosclerosis effect by increasing the surface ABCA1 and ABCG1 expressions of macrophage form cells and promoting cholesterol efflux.
ATP Binding Cassette Transporter 1
;
analysis
;
genetics
;
ATP Binding Cassette Transporter, Sub-Family G, Member 1
;
ATP-Binding Cassette Transporters
;
analysis
;
genetics
;
Animals
;
Cells, Cultured
;
Cholesterol
;
metabolism
;
Coumaric Acids
;
pharmacology
;
Foam Cells
;
drug effects
;
metabolism
;
Lipoproteins
;
analysis
;
genetics
;
Mice
8.Sodium ferulate protects against daunorubicin-induced cardiotoxicity in juvenile rats.
Jia-bian LIAN ; Zhi-juan WU ; Qiu-juan FANG ; Jing YU ; Rui-lan HE
Chinese Journal of Applied Physiology 2015;31(1):54-58
OBJECTIVETo investigate the protect effects of sodium ferulate (SF) on the daunormbicin(DNR-induced cardiotoxicity in juvenile rats.
METHODSForty male juvenile SD rats were randomly divided into control group (Control), daunorubicin group (DNR), sodium ferudate treatment group (DNR + SF), sodium ferudate group (SF) (n = 10) . Juvenile rats were intraperitoneally treated with DNR (2.5 mg/kg every week for a cumulative dose of 10 mg/kg) preparation immature myocardial injury model in presence with SF (60 mg/kg) oral treat- ment for 25 days. The left ventricular pressure and its response to isoproterenol were measured using left ventricular catheter. Rat myocardium myocardial pathology specimens and ultrastructure changes were also observed. The expression of cardiac Troponin I (cTNI) was detected by Western blot and RT-PCR. Results: SF treatment could inhibit the decreasing of heart rates induced by DNR damage (P < 0.05); it could increase the left ventrivular end diastolic pressure(LVEDP), heart rate, the maximal left ventrivular systolic speed(LVP + dp/dtmax) and the maximal left ventrivular diastolic speed (LVP-dp/dtmax) responding to isoproterenol stimulation(P < 0.01); SF also could improve the myocardial ultrastructure injuries and inhibit the decreasing of cTNI expression caused by DNR damages (P < 0.05).
CONCLUSIONSF treatment could alleviate the decreasing of cardiac reservation induced by DNR damages in juvenile rats, which might be related to its reversing the effects on the cardiac systolic and diastolic function injuries and its inhibiting effects on the decreasing of cTNI expression caused by DNR. The mechanism of SF preventing daunorubicin-induced cardiotoxicity in juvenile rats is relevant to inhabited cardiac Troponin I expression.
Animals ; Blood Pressure ; Cardiotoxicity ; drug therapy ; Coumaric Acids ; pharmacology ; Daunorubicin ; toxicity ; Heart ; physiopathology ; Heart Rate ; Isoproterenol ; Male ; Myocardium ; pathology ; Protective Agents ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Troponin I ; metabolism
9.Inhibitory effect of medicinal plant-derived carboxylic acids on the human transporters hOAT1, hOAT3, hOATP1B1, and hOATP2B1.
Zhi-Yu ZHANG ; Duan-Yun SI ; Xiu-Lin YI ; Chang-Xiao LIU
Chinese Journal of Natural Medicines (English Ed.) 2014;12(2):131-138
A significant number of organic carboxylic acids have been shown to influence the absorption and distribution of drugs mediated by organic anion transporters (OATs). In this study, uptake experiments were performed to assess the inhibitory effects of cinnamic acid, ferulic acid, oleanolic acid, deoxycholic acid, and cynarin on hOAT1, hOAT3, hOATP1B1, and hOATP2B1. After a drug-drug interaction (DDI) investigation, cinnamic acid, ferulic acid, deoxycholic acid, and cynarin were found and validated to inhibit hOAT1 in a competitive manner, and deoxycholic acid was found to be an inhibitor of all four transporters. The apparent 50% inhibitory concentrations of cinnamic acid, ferulic acid, deoxycholic acid, and cynarin were estimated to be 133.87, 3.69, 90.03 and 6.03 μmol·L(-1) for hOAT1, respectively. The apparent 50% inhibitory concentrations of deoxycholic acid were estimated to be 9.57 μmol·L(-1) for hOAT3, 70.54 μmol·L(-1) for hOATP1B1, and 168.27 μmol·L(-1) for hOATP2B1. Because cinnamic acid, ferulic acid, and cynarin are ingredients of food or food additives, the present study suggests there are new food-drug interactions to be disclosed. In addition, deoxycholic acid may be used as a probe for studying the correlation of OATs and OATPs.
Carboxylic Acids
;
pharmacology
;
Cinnamates
;
pharmacology
;
Coumaric Acids
;
pharmacology
;
Deoxycholic Acid
;
pharmacology
;
Diet
;
Drug Interactions
;
HEK293 Cells
;
Humans
;
Organic Anion Transport Protein 1
;
antagonists & inhibitors
;
Organic Anion Transporters
;
antagonists & inhibitors
;
Plant Extracts
;
pharmacology
;
Plants, Medicinal
;
chemistry
10.Influence of ferulic acid on the pain-depression dyad induced by reserpine.
Lu ZHANG ; Qian-Dong WANG ; Hua-Meng SHI ; Jian-Chun PAN
Acta Pharmaceutica Sinica 2013;48(1):32-37
This study is to offer a clinical pain-depression dyad therapy of ferulic acid, the pain-depression dyad induced by reserpine was established and the dose-effect relationship of ferulic acid on ameliorating pain-depression dyad was explored. Mice were randomly divided into control group, reserpine + vechile and reserpine + ferulic acid (5, 10, 20, 40 and 80 mg x kg(-1)) groups. The reserpine treated mice were tested with thermal hyperalgesia, mechanicial allodynia and forced swimming tests, and the SOD and NO levels of hippocampus and frontal cortex were measured. Moreover, the HPLC-ECD was used to detect the changes of central monoamines concentrations. Compared with control group, reserpine can induce a significant decrease in the nociceptive threshold and increase in the immobility time of the forced swimming test. The results suggested that reserpine significantly increased the level of nitrite in hippocampus and frontal cortex and reduced the levels of SOD, 5-HT and NE in these two brain regions. However, these indexes can be a dose-dependently reversed by ferulic acid (5, 10, 20, 40 and 80 mg x kg(-1)). Ferulic acid can reverse pain-depression dyad, especially at the dose of 80 mg x kg(-1). In addition, it can influence oxidative stress and monoamine level.
Animals
;
Antidepressive Agents
;
administration & dosage
;
pharmacology
;
Coumaric Acids
;
administration & dosage
;
pharmacology
;
Depression
;
chemically induced
;
complications
;
metabolism
;
physiopathology
;
Dopamine
;
metabolism
;
Dose-Response Relationship, Drug
;
Frontal Lobe
;
metabolism
;
Hippocampus
;
metabolism
;
Hyperalgesia
;
physiopathology
;
Male
;
Mice
;
Mice, Inbred ICR
;
Nitric Oxide
;
metabolism
;
Norepinephrine
;
metabolism
;
Pain
;
chemically induced
;
complications
;
metabolism
;
physiopathology
;
Pain Measurement
;
Random Allocation
;
Reserpine
;
adverse effects
;
Serotonin
;
metabolism
;
Superoxide Dismutase
;
metabolism
;
Swimming
;
physiology

Result Analysis
Print
Save
E-mail