1.Right ventricular-arterial uncoupling as an independent prognostic factor in acute heart failure with preserved ejection fraction accompanied with coronary artery disease.
Hongdan JIA ; Li LIU ; Xile BI ; Ximing LI ; Hongliang CONG
Chinese Medical Journal 2023;136(10):1198-1206
		                        		
		                        			BACKGROUND:
		                        			Right ventricular (RV)-arterial uncoupling is a powerful independent predictor of prognosis in heart failure with preserved ejection fraction (HFpEF). Coronary artery disease (CAD) can contribute to the pathophysiological characteristics of HFpEF. This study aimed to evaluate the prognostic value of RV-arterial uncoupling in acute HFpEF patients with CAD.
		                        		
		                        			METHODS:
		                        			This prospective study included 250 consecutive acute HFpEF patients with CAD. Patients were divided into RV-arterial uncoupling and coupling groups by the optimal cutoff value, based on a receiver operating characteristic curve of tricuspid annular plane systolic excursion to pulmonary artery systolic pressure (TAPSE/PASP). The primary endpoint was a composite of all-cause death, recurrent ischemic events, and HF hospitalizations.
		                        		
		                        			RESULTS:
		                        			TAPSE/PASP ≤0.43 provided good accuracy in identifying patients with RV-arterial uncoupling (area under the curve, 0.731; sensitivity, 61.4%; and specificity, 76.6%). Of the 250 patients, 150 and 100 patients could be grouped into the RV-arterial coupling (TAPSE/PASP >0.43) and uncoupling (TAPSE/PASP ≤0.43) groups, respectively. Revascularization strategies were slightly different between groups; the RV-arterial uncoupling group had a lower rate of complete revascularization (37.0% [37/100] vs . 52.7% [79/150], P <0.001) and a higher rate of no revascularization (18.0% [18/100] vs . 4.7% [7/150], P <0.001) compared to the RV-arterial coupling group. The cohort with TAPSE/PASP ≤0.43 had a significantly worse prognosis than the cohort with TAPSE/PASP >0.43. Multivariate Cox analysis showed TAPSE/PASP ≤0.43 as an independent associated factor for the primary endpoint, all-cause death, and recurrent HF hospitalization (hazard ratios [HR]: 2.21, 95% confidence interval [CI]: 1.44-3.39, P <0.001; HR: 3.32, 95% CI: 1.30-8.47, P = 0.012; and HR: 1.93, 95% CI: 1.10-3.37, P = 0.021, respectively), but not for recurrent ischemic events (HR: 1.48, 95% CI: 0.75-2.90, P = 0.257).
		                        		
		                        			CONCLUSION
		                        			RV-arterial uncoupling, based on TAPSE/PASP, is independently associated with adverse outcomes in acute HFpEF patients with CAD.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Prognosis
		                        			;
		                        		
		                        			Prospective Studies
		                        			;
		                        		
		                        			Stroke Volume/physiology*
		                        			;
		                        		
		                        			Echocardiography, Doppler/adverse effects*
		                        			;
		                        		
		                        			Coronary Artery Disease/complications*
		                        			;
		                        		
		                        			Heart Failure
		                        			;
		                        		
		                        			Pulmonary Artery/diagnostic imaging*
		                        			;
		                        		
		                        			Ventricular Function, Right/physiology*
		                        			;
		                        		
		                        			Ventricular Dysfunction, Right
		                        			
		                        		
		                        	
2.Value of fractional flow reserve derived from coronary computed tomographic angiography and plaque quantitative analysis in predicting adverse outcomes of non-obstructive coronary heart disease.
Jun LIU ; Yong WU ; Hong HUANG ; Peng WANG ; Qinghua WU ; Hongyan QIAO
Chinese Critical Care Medicine 2023;35(6):615-619
		                        		
		                        			OBJECTIVE:
		                        			To investigate the value of coronary computed tomographic angiography (CCTA)-based fractional flow reserve (CT-FFR) and plaque quantitative analysis in predicting adverse outcomes in patients with non-obstructive coronary heart disease (CAD).
		                        		
		                        			METHODS:
		                        			Clinical data of patients with non-obstructive CAD who underwent CCTA at the Affiliated Hospital of Jiangnan University from March 2014 to March 2018 were retrospectively analyzed and followed up, and the occurrence of major adverse cardiovascular event (MACE) was recorded. The patients were divided into MACE and non-MACE groups according to the occurrence of MACE. The clinical data, CCTA plaque characteristics including plaque length, stenosis degree, minimum lumen area, total plaque volume, non-calcified plaque volume, calcified plaque volume, plaque burden (PB) and remodelling index (RI), and CT-FFR were compared between the two groups. Multivaritate Cox proportional risk model was used to evaluate the relationship between clinical factors, CCTA parameters and MACE. The receiver operator characteristic curve (ROC curve) was used to assess the predictive power of outcome prediction model based on different CCTA parameters.
		                        		
		                        			RESULTS:
		                        			Finally 217 patients were included, of which 43 (19.8%) had MACE and 174 (80.2%) did not. The median follow-up interval was 24 (16, 30) months. The CCTA showed that patients in the MACE group had more severe stenosis than that in the non-MACE group [(44.3±3.8)% vs. (39.5±2.5)%], larger total plaque volume and non-calcified plaque volume [total plaque volume (mm3): 275.1 (197.1, 376.9), non-calcified plaque volume (mm3): 161.5 (114.5, 307.8) vs. 117.9 (77.7, 185.5)], PB and RI were larger [PB: 50.2% (42.1%, 54.8%) vs. 45.1% (38.2%, 51.7%), RI: 1.19 (0.93, 1.29) vs. 1.03 (0.90, 1.22)], CT-FFR value was lower [0.85 (0.80, 0.88) vs. 0.92 (0.87, 0.97)], and the differences were statistically significant (all P < 0.05). Cox regression analysis showed that non-calcified plaques volume [hazard ratio (HR) = 1.005. 95% confidence interval (95%CI) was 1.025-4.866], PB ≥ 50% (HR = 3.146, 95%CI was 1.443-6.906), RI ≥ 1.10 (HR = 2.223, 95%CI was 1.002-1.009) and CT-FFR ≤ 0.87 (HR = 2.615, 95%CI was 1.016-6.732) were independent predictors of MACE (all P < 0.05). The model based on CCTA stenosis degree+CT-FFR+quantitative plaque characteristics (including non-calcified plaque volume, RI, PB) [area under the ROC curve (AUC) = 0.91, 95%CI was 0.87-0.95] had significantly better predictive efficacy for adverse outcomes than the model based on CCTA stenosis degree (AUC = 0.63, 95%CI was 0.54-0.71) and the model based on CCTA stenosis degree+CT-FFR (AUC = 0.71, 95%CI was 0.63-0.79; both P < 0.01).
		                        		
		                        			CONCLUSIONS
		                        			CT-FFR and plaque quantitative analysis based on CCTA are helpful in predicting adverse outcomes in patients with non-obstructive CAD. Non-calcified plaque volume, RI, PB and CT-FFR are important predictors of MACE. Compared with the prediction model based on stenosis degree and CT-FFR, the combined plaque quantitative index can significantly improve the prediction efficiency of adverse outcomes in patients with non-obstructive CAD.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Fractional Flow Reserve, Myocardial
		                        			;
		                        		
		                        			Coronary Angiography/methods*
		                        			;
		                        		
		                        			Constriction, Pathologic
		                        			;
		                        		
		                        			Retrospective Studies
		                        			;
		                        		
		                        			ROC Curve
		                        			;
		                        		
		                        			Predictive Value of Tests
		                        			;
		                        		
		                        			Plaque, Atherosclerotic/diagnostic imaging*
		                        			;
		                        		
		                        			Coronary Stenosis/diagnostic imaging*
		                        			;
		                        		
		                        			Tomography, X-Ray Computed
		                        			;
		                        		
		                        			Coronary Artery Disease/diagnostic imaging*
		                        			
		                        		
		                        	
3.Predictive value of left ventricular ejection fraction reserve assessed by SPECT G-MPI for major adverse cardiovascular event in patients with coronary artery disease.
Yi Han ZHOU ; Yao LU ; Jing Jing MENG ; Tian Tian MOU ; Yu Jie BAI ; Shuang ZHANG ; Ya Qi ZHENG ; Qiu Ju DENG ; Jian JIAO ; Zhi CHANG ; Xiao Fen XIE ; Ming Kai YUN ; Hong Zhi MI ; Xiang LI ; Xiao Li ZHANG
Chinese Journal of Cardiology 2023;51(6):626-632
		                        		
		                        			
		                        			Objective: To evaluate the prognostic value of left ventricular ejection fraction (LVEF) reserve assessed by gated SPECT myocardial perfusion imaging (SPECT G-MPI) for major adverse cardiovascular event (MACE) in patients with coronary artery disease. Methods: This is a retrospective cohort study. From January 2017 to December 2019, patients with coronary artery disease and confirmed myocardial ischemia by stress and rest SPECT G-MPI, and underwent coronary angiography within 3 months were enrolled. The sum stress score (SSS) and sum resting score (SRS) were analyzed by the standard 17-segment model, and the sum difference score (SDS, SDS=SSS-SRS) was calculated. The LVEF at stress and rest were analyzed by 4DM software. The LVEF reserve (ΔLVEF) was calculated (ΔLVEF=stress LVEF-rest LVEF). The primary endpoint was MACE, which was obtained by reviewing the medical record system or by telephone follow-up once every twelve months. Patients were divided into MACE-free and MACE groups. Spearman correlation analysis was used to analyze the correlation between ΔLVEF and all MPI parameters. Cox regression analysis was used to analyze the independent factors of MACE, and the optimal SDS cutoff value for predicting MACE was determined by receiver operating characteristic curve (ROC). Kaplan-Meier survival curves were plotted to compare the difference in the incidence of MACE between different SDS groups and different ΔLVEF groups. Results: A total of 164 patients with coronary artery disease [120 male; age (58.6±10.7) years] were included. The average follow-up time was (26.5±10.4) months, and a total of 30 MACE were recorded during follow-up. Multivariate Cox regression analysis showed that SDS (HR=1.069, 95%CI: 1.005-1.137, P=0.035) and ΔLVEF (HR=0.935, 95%CI: 0.878-0.995, P=0.034) were independent predictors of MACE. According to ROC curve analysis, the optimal cut-off to predict MACE was a SDS of 5.5 with an area under the curve of 0.63 (P=0.022). Survival analysis showed that the incidence of MACE was significantly higher in the SDS≥5.5 group than in the SDS<5.5 group (27.6% vs. 13.2%, P=0.019), but the incidence of MACE was significantly lower in the ΔLVEF≥0 group than in theΔLVEF<0 group (11.0% vs. 25.6%, P=0.022). Conclusions: LVEF reserve (ΔLVEF) assessed by SPECT G-MPI serves as an independent protective factor for MACE, while SDS is an independent risk predictor in patients with coronary artery disease. SPECT G-MPI is valuable for risk stratification by assessing myocardial ischemia and LVEF.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Middle Aged
		                        			;
		                        		
		                        			Aged
		                        			;
		                        		
		                        			Coronary Artery Disease/diagnostic imaging*
		                        			;
		                        		
		                        			Stroke Volume
		                        			;
		                        		
		                        			Myocardial Perfusion Imaging
		                        			;
		                        		
		                        			Retrospective Studies
		                        			;
		                        		
		                        			Ventricular Function, Left
		                        			;
		                        		
		                        			Myocardial Ischemia
		                        			
		                        		
		                        	
4.Incremental value of epicardial fat volume on predicting obstructive coronary artery disease with myocardial ischemia.
Wen Ji YU ; Yong Jun CHEN ; Xiao Yu YANG ; Jian Feng WANG ; Xiao Liang SHAO ; Fei Fei ZHANG ; Bao LIU ; Yue Tao WANG
Chinese Journal of Cardiology 2023;51(6):633-641
		                        		
		                        			
		                        			Objective: This study aimed to investigate the association between epicardial fat volume (EFV) and obstructive coronary artery disease (CAD) with myocardial ischemia, and evaluate the incremental value of EFV on top of traditional risk factors and coronary artery calcium (CAC) in predicting obstructive CAD with myocardial ischemia. Methods: This study was a retrospective cross-sectional study. Patients with suspected CAD who underwent coronary angiography (CAG) and single photon emission computerized tomography-myocardial perfusion imaging (SPECT-MPI) at the Third Affiliated Hospital of Soochow University from March 2018 to November 2019 were consecutively enrolled. EFV and CAC were measured by non-contrast chest computed tomography (CT) scan. Obstructive CAD was defined as coronary artery stenosis≥50% in at least one of the major epicardial coronary arteries, and myocardial ischemia was defined as reversible perfusion defects in stress and rest MPI. Obstructive CAD with myocardial ischemia was defined in patients with coronary stenosis severity≥50% and reversible perfusion defects in the corresponding areas of SPECT-MPI. Patients with myocardial ischemia bot without obstructive CAD were defined as none-obstructive CAD with myocardial ischemia group. We collected and compared the general clinical data, CAC and EFV between the two groups. Multivariable logistic regression analysis was performed to identify the relationship between EFV and obstructive CAD with myocardial ischemia. ROC curves were performed to determine whether addition of EFV improved predictive value beyond traditional risk factors and CAC for obstructive CAD with myocardial ischemia. Results: Among the 164 patients with suspected CAD, 111 patients were males, and average age was (61.4±9.9) years old. 62 (37.8%) patients were included into the obstructive CAD with myocardial ischemia group. 102 (62.2%) patients were included into the none-obstructive CAD with myocardial ischemia group. EFV was significantly higher in obstructive CAD with myocardial ischemia group than in none-obstructive CAD with myocardial ischemia group ((135.63±33.29)cm3 and (105.18±31.16)cm3, P<0.01). Univariate regression analysis showed the risk of obstructive CAD with myocardial ischemia increased by 1.96 times for each SD increase in EFV(OR 2.96; 95%CI, 1.89-4.62; P<0.01). After adjustment for traditional risk factors and CAC, EFV remained as an independent predictor for obstructive CAD with myocardial ischemia (OR, 4.48, 95%CI, 2.17-9.23; P<0.01). Addition of EFV to CAC and traditional risk factors was related to larger AUC for predicting obstructive CAD with myocardial ischemia (0.90 vs. 0.85, P=0.04, 95%CI: 0.85-0.95) and the global chi-square increased by 21.81 (P<0.05). Conclusions: EFV is an independent predictor for obstructive CAD with myocardial ischemia. Addition of EFV to traditional risk factors and CAC has incremental value for predicting obstructive CAD with myocardial ischemia in this patient cohort.
		                        		
		                        		
		                        		
		                        			Male
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Middle Aged
		                        			;
		                        		
		                        			Aged
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Coronary Artery Disease/diagnostic imaging*
		                        			;
		                        		
		                        			Cross-Sectional Studies
		                        			;
		                        		
		                        			Retrospective Studies
		                        			;
		                        		
		                        			Myocardial Ischemia/diagnostic imaging*
		                        			;
		                        		
		                        			Coronary Stenosis
		                        			;
		                        		
		                        			Calcium
		                        			
		                        		
		                        	
6.Ratio of visceral fat area to body fat mass (VBR) is a superior predictor of coronary heart disease.
Binbin ZHANG ; Jiangshan HE ; Pei GUO ; Jianxiong WANG ; Chunjun LI ; Li ZHANG ; Congfang GUO ; Yirui GUO ; Fenghua GUO ; Mianzhi ZHANG ; Minying ZHANG
Chinese Medical Journal 2023;136(19):2380-2382
8.Application of Targeted Coronary Angiography in the Diagnosis of Sudden Cardiac Death.
Xin ZHAO ; Zhi-Ming CHEN ; Wen-Yun LIU ; Bo WANG ; Hong-Yang LI ; Li-Yao YANG ; Yan TENG ; Li-Jun WANG ; Yan-Bin GAO ; Wei-Long CHEN ; Lei ZHANG
Journal of Forensic Medicine 2023;39(6):542-548
		                        		
		                        			OBJECTIVES:
		                        			To diagnose coronary artery stenosis by using the postmortem computed tomography angiography (PMCTA), and to explore the diagnostic value of PMCTA in sudden cardiac death.
		                        		
		                        			METHODS:
		                        			Six death cases were selected, and the contrast medium iohexol was injected under high pressure through femoral artery approach with 5F pigtail catheter to obtain coronary image data and then the data was analyzed. The results of targeted coronary imaging and coronary artery calcium score (CaS) were compared with the results of conventional autopsy and histopathological examination.
		                        		
		                        			RESULTS:
		                        			The autopsy and histopathological examination of cases with coronary artery stenosis obtained similar results in targeted coronary angiography, with a diagnostic concordance rate of 83.3%. Targeted coronary angiography could effectively show coronary artery diseases, and the CaS was consistent with the results of conventional autopsy and histopathological examination.
		                        		
		                        			CONCLUSIONS
		                        			Targeted coronary angiography can be used as an effective auxiliary method for conventional autopsy in cases of sudden cardiac death.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Computed Tomography Angiography/methods*
		                        			;
		                        		
		                        			Coronary Angiography/methods*
		                        			;
		                        		
		                        			Coronary Artery Disease/diagnostic imaging*
		                        			;
		                        		
		                        			Coronary Stenosis/diagnostic imaging*
		                        			;
		                        		
		                        			Death, Sudden, Cardiac/pathology*
		                        			
		                        		
		                        	
9.Diagnostic efficiency and incremental value of myocardial blood flow quantification by CZT SPECT for patients with coronary artery disease.
Ze Kun PANG ; Jiao WANG ; Yue CHEN ; Hong Xin CHU ; Meng Yan ZHANG ; Jian Ming LI
Chinese Journal of Cardiology 2022;50(5):494-500
		                        		
		                        			
		                        			Objective: To investigate the diagnostic efficiency and incremental value of quantitative myocardial blood flow measurements by Cadmium-Zine-Telluride (CZT) single photon emission computed tomography (SPECT) dynamic myocardial perfusion imaging (MPI) in patients with coronary artery disease (CAD) compared with traditional semi-quantitative measurements by MPI. Methods: This is a retrospective, cross-sectional study. We retrospectively analyzed clinical data of patients with suspected or known CAD, who underwent the dynamic MPI quantitative blood flow measurement of CZT SPECT in TEDA International Cardiovascular Hospital from October 2018 to December 2020. Clinical data, semi-quantitative parameters (stress score (SS), rest score (RS) and different score (DS)) and myocardial quantitative blood flow parameters (rest myocardial blood flow (rMBF), stress myocardial blood flow (sMBF) and myocardial flow reserve (MFR)) were analyzed. According to the results of coronary angiography, patients were divided into the stenosis group and the control group with coronary artery stenosis ≥50% or ≥75% as the diagnosis criteria. The differences of quantitative and semi-quantitative parameters between the two groups were compared, and the diagnostic efficacy was compared by receiver operating characteristic(ROC) curve. Results: A total of 98 patients with a mean age of (62.1±8.7) years were included in the study, including 66 males (67%). At the patient level, with the positive standard of coronary artery stenosis≥50%, the left ventricle (LV) stress MBF (LV-sMBF) ((1.36±0.45) ml·min-1·g-1) and LV-MFR (1.45±0.43) of the stenosis group were lower than the LV-sMBF ((2.09±0.64) ml·min-1·g-1) and LV-MFR (2.17±0.54) of control group; summed SS and summed DS were higher than control group (all P<0.05). With the positive standard of coronary artery stenosis ≥75%, the LV-sMBF ((1.19±0.34) ml·min-1·g-1) and LV-MFR (1.34±0.35) of stenosis group were lower than the LV-sMBF ((1.94±0.63) ml·min-1·g-1) and MFR (2.00±0.58) of control group; all semi-quantitative parameters were higher than control group (all P<0.05). At the vascular level, with coronary artery stenosis ≥50% as the diagnosis criteria, the sMBF ((1.26±0.49) ml·min-1·g-1) and MFR (1.35±0.46) of stenosis group were lower than the sMBF ((1.95±0.70) ml·min-1·g-1) and MFR (2.05±0.65) of control group; SS and DS were higher than control group (all P<0.05). With coronary artery stenosis≥75% as the diagnosis criteria, the sMBF ((1.12±0.41) ml·min-1·g-1) and MFR (1.25±0.38) of stenosis group were lower than the sMBF ((1.84±0.70) ml·min-1·g-1) and MFR (1.93±0.66) of control group; all semi-quantitative parameters were higher than control group (all P<0.05). With coronary artery stenosis≥50% as the diagnosis criteria and CAG as the reference standard, the AUC and 95%CI of myocardial quantitative blood flow parameters indicated by ROC curve for diagnosis of CAD were 0.830 (0.783-0.877). The sensitivity (86.1% vs. 61.5%), specificity (82.6% vs. 73.8%), positive predictive value (77.8% vs. 62.5%), negative predictive value (89.3% vs. 73.0%) and accuracy (84.0% vs. 68.7%) were all higher than the semi-quantitative parameters (all P<0.05). With coronary artery stenosis≥75% as the diagnosis criteria, the AUC and 95%CI of myocardial quantitative blood flow parameters indicated by ROC curve for diagnosis of CAD were 0.832(0.785-0.879). The sensitivity (89.2% vs. 67.6%), negative predictive value (95.5% vs. 86.2%) and accuracy (80.6% vs. 68.0%) were all higher than semi-quantitative parameters (all P<0.05). Conclusion: Compared with traditional SPECT MPI derived semi-quantitative parameters, diagnostic efficacy for CAD is higher using CZT SPECT quantitative myocardial blood flow parameters, this strategy thus has additional diagnostic benefits and incremental value on the diagnosis of CAD.
		                        		
		                        		
		                        		
		                        			Aged
		                        			;
		                        		
		                        			Constriction, Pathologic
		                        			;
		                        		
		                        			Coronary Angiography
		                        			;
		                        		
		                        			Coronary Artery Disease/diagnostic imaging*
		                        			;
		                        		
		                        			Coronary Stenosis/diagnostic imaging*
		                        			;
		                        		
		                        			Cross-Sectional Studies
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Middle Aged
		                        			;
		                        		
		                        			Myocardial Perfusion Imaging/methods*
		                        			;
		                        		
		                        			Retrospective Studies
		                        			;
		                        		
		                        			Tomography, Emission-Computed, Single-Photon/methods*
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail