1.Downregulation of cardiac PIASy inhibits Cx43 SUMOylation and ameliorates ventricular arrhythmias in a rat model of myocardial ischemia/reperfusion injury.
Tingting WANG ; Jinmin LIU ; Chenchen HU ; Xin WEI ; Linlin HAN ; Afang ZHU ; Rong WANG ; Zhijun CHEN ; Zhengyuan XIA ; Shanglong YAO ; Weike MAO
Chinese Medical Journal 2023;136(11):1349-1357
BACKGROUND:
Dysfunction of the gap junction channel protein connexin 43 (Cx43) contributes to myocardial ischemia/reperfusion (I/R)-induced ventricular arrhythmias. Cx43 can be regulated by small ubiquitin-like modifier (SUMO) modification. Protein inhibitor of activated STAT Y (PIASy) is an E3 SUMO ligase for its target proteins. However, whether Cx43 is a target protein of PIASy and whether Cx43 SUMOylation plays a role in I/R-induced arrhythmias are largely unknown.
METHODS:
Male Sprague-Dawley rats were infected with PIASy short hairpin ribonucleic acid (shRNA) using recombinant adeno-associated virus subtype 9 (rAAV9). Two weeks later, the rats were subjected to 45 min of left coronary artery occlusion followed by 2 h reperfusion. Electrocardiogram was recorded to assess arrhythmias. Rat ventricular tissues were collected for molecular biological measurements.
RESULTS:
Following 45 min of ischemia, QRS duration and QTc intervals statistically significantly increased, but these values decreased after transfecting PIASy shRNA. PIASy downregulation ameliorated ventricular arrhythmias induced by myocardial I/R, as evidenced by the decreased incidence of ventricular tachycardia and ventricular fibrillation, and reduced arrythmia score. In addition, myocardial I/R statistically significantly induced PIASy expression and Cx43 SUMOylation, accompanied by reduced Cx43 phosphorylation and plakophilin 2 (PKP2) expression. Moreover, PIASy downregulation remarkably reduced Cx43 SUMOylation, accompanied by increased Cx43 phosphorylation and PKP2 expression after I/R.
CONCLUSION
PIASy downregulation inhibited Cx43 SUMOylation and increased PKP2 expression, thereby improving ventricular arrhythmias in ischemic/reperfused rats heart.
Rats
;
Male
;
Animals
;
Myocardial Reperfusion Injury/metabolism*
;
Connexin 43/genetics*
;
Sumoylation
;
Down-Regulation
;
Rats, Sprague-Dawley
;
Arrhythmias, Cardiac/drug therapy*
;
Myocardial Ischemia/metabolism*
;
RNA, Small Interfering/metabolism*
2.Connexin 43-modified bone marrow stromal cells reverse the imatinib resistance of K562 cells via Ca 2+ -dependent gap junction intercellular communication.
Xiaoping LI ; Yunshuo XIAO ; Xiaoqi WANG ; Ruihao HUANG ; Rui WANG ; Yi DENG ; Jun RAO ; Qiangguo GAO ; Shijie YANG ; Xi ZHANG
Chinese Medical Journal 2023;136(2):194-206
BACKGROUND:
Imatinib mesylate (IM) resistance is an emerging problem for chronic myeloid leukemia (CML). Previous studies found that connexin 43 (Cx43) deficiency in the hematopoietic microenvironment (HM) protects minimal residual disease (MRD), but the mechanism remains unknown.
METHODS:
Immunohistochemistry assays were employed to compare the expression of Cx43 and hypoxia-inducible factor 1α (HIF-1α) in bone marrow (BM) biopsies of CML patients and healthy donors. A coculture system of K562 cells and several Cx43-modified bone marrow stromal cells (BMSCs) was established under IM treatment. Proliferation, cell cycle, apoptosis, and other indicators of K562 cells in different groups were detected to investigate the function and possible mechanism of Cx43. We assessed the Ca 2+ -related pathway by Western blotting. Tumor-bearing models were also established to validate the causal role of Cx43 in reversing IM resistance.
RESULTS:
Low levels of Cx43 in BMs were observed in CML patients, and Cx43 expression was negatively correlated with HIF-1α. We also observed that K562 cells cocultured with BMSCs transfected with adenovirus-short hairpin RNA of Cx43 (BMSCs-shCx43) had a lower apoptosis rate and that their cell cycle was blocked in G0/G1 phase, while the result was the opposite in the Cx43-overexpression setting. Cx43 mediates gap junction intercellular communication (GJIC) through direct contact, and Ca 2+ is the key factor mediating the downstream apoptotic pathway. In animal experiments, mice bearing K562, and BMSCs-Cx43 had the smallest tumor volume and spleen, which was consistent with the in vitro experiments.
CONCLUSIONS
Cx43 deficiency exists in CML patients, promoting the generation of MRD and inducing drug resistance. Enhancing Cx43 expression and GJIC function in the HM may be a novel strategy to reverse drug resistance and promote IM efficacy.
Animals
;
Humans
;
Mice
;
Apoptosis
;
Bone Marrow Cells
;
Cell Communication
;
Connexin 43/genetics*
;
Gap Junctions/metabolism*
;
Imatinib Mesylate/therapeutic use*
;
K562 Cells
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology*
;
Mesenchymal Stem Cells/metabolism*
;
Tumor Microenvironment
;
Calcium/metabolism*
3.MicroRNA-22-3p Regulates the Expression of Kruppel-like Factor 6 to Affect the Cardiomyocyte-like Differentiation of Bone Marrow Mesenchymal Stem Cell.
Xiao-Ming ZHONG ; Lei ZHANG ; Xin-Liang YAO ; Hong-Yang LIU ; Yuan ZHANG ; Qi-Lin WAN ; Yan-Ming LI ; Guan-Chang CHENG
Acta Academiae Medicinae Sinicae 2023;45(1):1-8
Objective To explore the effect of microRNA-22-3p (miR-22-3p) regulating the expression of Kruppel-like factor 6 (KLF6) on the cardiomyocyte-like differentiation of bone marrow mesenchymal stem cell (BMSC). Methods Rat BMSC was isolated and cultured,and the third-generation BMSC was divided into a control group,a 5-azacytidine(5-AZA)group,a mimics-NC group,a miR-22-3p mimics group,a miR-22-3p mimics+pcDNA group,and a miR-22-3p mimics+pcDNA-KLF6 group.Real-time fluorescent quantitative PCR (qRT-PCR) was carried out to determine the expression of miR-22-3p and KLF6 in cells.Immunofluorescence staining was employed to detect the expression of Desmin,cardiac troponin T (cTnT),and connexin 43 (Cx43).Western blotting was employed to determine the protein levels of cTnT,Cx43,Desmin,and KLF6,and flow cytometry to detect the apoptosis of BMSC.The targeting relationship between miR-22-3p and KLF6 was analyzed by dual luciferase reporter gene assay. Results Compared with the control group,5-AZA up-regulated the expression of miR-22-3p (q=7.971,P<0.001),Desmin (q=7.876,P<0.001),cTnT (q=10.272,P<0.001),and Cx43 (q=6.256,P<0.001),increased the apoptosis rate of BMSC (q=12.708,P<0.001),and down-regulated the mRNA (q=20.850,P<0.001) and protein (q=11.080,P<0.001) levels of KLF6.Compared with the 5-AZA group and the mimics-NC group,miR-22-3p mimics up-regulated the expression of miR-22-3p (q=3.591,P<0.001;q=11.650,P<0.001),Desmin (q=5.975,P<0.001;q=13.579,P<0.001),cTnT (q=7.133,P<0.001;q=17.548,P<0.001),and Cx43 (q=4.571,P=0.037;q=11.068,P<0.001),and down-regulated the mRNA (q=7.384,P<0.001;q=28.234,P<0.001) and protein (q=4.594,P=0.036;q=15.945,P<0.001) levels of KLF6.The apoptosis rate of miR-22-3p mimics group was lower than that of 5-AZA group (q=8.216,P<0.001).Compared with the miR-22-3p mimics+pcDNA group,miR-22-3p mimics+pcDNA-KLF6 up-regulated the mRNA(q=23.891,P<0.001) and protein(q=13.378,P<0.001)levels of KLF6,down-regulated the expression of Desmin (q=9.505,P<0.001),cTnT (q=10.985,P<0.001),and Cx43 (q=8.301,P<0.001),and increased the apoptosis rate (q=4.713,P=0.029).The dual luciferase reporter gene experiment demonstrated that KLF6 was a potential target gene of miR-22-3p. Conclusion MiR-22-3p promotes cardiomyocyte-like differentiation of BMSC by inhibiting the expression of KLF6.
Animals
;
Rats
;
Myocytes, Cardiac
;
Kruppel-Like Factor 6
;
Connexin 43
;
Desmin
;
Cell Differentiation
;
Azacitidine/pharmacology*
;
Mesenchymal Stem Cells
;
RNA, Messenger
;
MicroRNAs
4.Inhibition connexin 43 by mimetic peptide Gap27 mediates protective effects on 6-hydroxydopamine induced Parkinson's disease mouse model.
Hui Hui QUAN ; Wei Xing XU ; Yu Ze QI ; Qing Ru LI ; Hui ZHOU ; Jing HUANG
Journal of Peking University(Health Sciences) 2022;54(3):421-426
OBJECTIVE:
To explore whether the using of mimetic peptide Gap27, a selective inhibitor of connexin 43 (Cx43), could block the death of dopamine neurons and influence the expression of Cx43 in 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease mouse models.
METHODS:
Eighteen C57BL/6 mice were randomly divided into control group, 6-OHDA group and 6-OHDA+Gap27 group, with 6 mice in each group. Bilateral substantia nigra stereotactic injection was performed. The control group was injected with ascorbate solution, 6-OHDA group was injected with 6-OHDA solution, and 6-OHDA+Gap27 group was injected with 6-OHDA and Gap27 mixed solution. Immuno-histochemical staining was used to detect the number of dopamine neurons, quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of Cx43 messenger ribonucleic acid (mRNA), immuno-fluorescence staining was used to detect the distribution of Cx43 protein, the contents of Cx43 protein and Cx43 phosphorylation at serine 368 (Cx43-ps368) in mouse midbrain were detected by Western blot.
RESULTS:
After injection of 6-OHDA, numerous dopamine neurons in substantia nigra died as Cx43 content increased, Cx43-ps368 content decreased. Mixing Gap27 while injecting 6-OHDA could reduce the number of death dopamine neurons and weaken the changes of Cx43 and Cx43-ps368 content caused by 6-OHDA. The number of tyrosine hydroxylase (TH) immunoreactive positive neurons in 6-OHDA group decreased to 27.7% ± 0.02% of the control group (P < 0.01); The number of TH immunoreactive positive neurons in 6-OHDA+Gap27 group was (1.64±0.16) times higher than that in 6-OHDA group (P < 0.05); The content of total Cx43 protein in 6-OHDA group was (1.44±0.07) times higher than that in 6-OHDA+Gap27 group (P < 0.05) while (1.68±0.07) times higher than that in control group (P < 0.01). In 6-OHDA group, the content of Cx43-ps368 protein and its proportion in total Cx43 protein were significantly lower than that in 6-OHDA+Gap27 group (P < 0.05).
CONCLUSION
In 6-OHDA mouse models, mimetic peptide Gap27 played a protective role in reducing the damage to substantia nigra dopamine neurons, which was induced by 6-OHDA. The overexpression of Cx43 protein might have neurotoxicity to dopamine neuron. Meanwhile, decreasing Cx43 protein level and keeping Cx43-ps368 protein level may be the protective mechanisms of Gap27.
Animals
;
Connexin 43/pharmacology*
;
Disease Models, Animal
;
Dopaminergic Neurons/metabolism*
;
Mice
;
Mice, Inbred C57BL
;
Oxidopamine/metabolism*
;
Parkinson Disease/metabolism*
;
Peptides/pharmacology*
;
Tyrosine 3-Monooxygenase/pharmacology*
5.Role of connexin 43 in odontoblastic differentiation and structural maintenance in pulp damage repair.
Jiaxin YIN ; Jue XU ; Ran CHENG ; Meiying SHAO ; Yuandong QIN ; Hui YANG ; Tao HU
International Journal of Oral Science 2021;13(1):1-1
Dental pulp can initiate its damage repair after an injury of the pulp-dentin complex by rearrangement of odontoblasts and formation of newly differentiated odontoblast-like cells. Connexin 43 (Cx43) is one of the gap junction proteins that participates in multiple tissue repair processes. However, the role of Cx43 in the repair of the dental pulp remains unclear. This study aimed to determine the function of Cx43 in the odontoblast arrangement patterns and odontoblastic differentiation. Human teeth for in vitro experiments were acquired, and a pulp injury model in Sprague-Dawley rats was used for in vivo analysis. The odontoblast arrangement pattern and the expression of Cx43 and dentin sialophosphoprotein (DSPP) were assessed. To investigate the function of Cx43 in odontoblastic differentiation, we overexpressed or inhibited Cx43. The results indicated that polarized odontoblasts were arranged along the pulp-dentin interface and had high levels of Cx43 expression in the healthy teeth; however, the odontoblast arrangement pattern was slightly changed concomitant to an increase in the Cx43 expression in the carious teeth. Regularly arranged odontoblast-like cells had high levels of the Cx43 expression during the formation of mature dentin, but the odontoblast-like cells were not regularly arranged beneath immature osteodentin in the pulp injury models. Subsequent in vitro experiments demonstrated that Cx43 is upregulated during odontoblastic differentiation of the dental pulp cells, and inhibition or overexpression of Cx43 influence the odontoblastic differentiation. Thus, Cx43 may be involved in the maintenance of odontoblast arrangement patterns, and influence the pulp repair outcomes by the regulation of odontoblastic differentiation.
Animals
;
Cell Differentiation
;
Connexin 43
;
Dental Pulp
;
Extracellular Matrix Proteins
;
Odontoblasts
;
Phosphoproteins
;
Rats
;
Rats, Sprague-Dawley
6.Transforming growth factor-β1-induced N-cadherin drives cell-cell communication through connexin43 in osteoblast lineage.
Yueyi YANG ; Wenjing LIU ; JieYa WEI ; Yujia CUI ; Demao ZHANG ; Jing XIE
International Journal of Oral Science 2021;13(1):15-15
Gap junction (GJ) has been indicated to have an intimate correlation with adhesion junction. However, the direct interaction between them partially remains elusive. In the current study, we aimed to elucidate the role of N-cadherin, one of the core components in adhesion junction, in mediating connexin 43, one of the functional constituents in gap junction, via transforming growth factor-β1(TGF-β1) induction in osteoblasts. We first elucidated the expressions of N-cadherin induced by TGF-β1 and also confirmed the upregulation of Cx43, and the enhancement of functional gap junctional intercellular communication (GJIC) triggered by TGF-β1 in both primary osteoblasts and MC3T3 cell line. Colocalization analysis and Co-IP experimentation showed that N-cadherin interacts with Cx43 at the site of cell-cell contact. Knockdown of N-cadherin by siRNA interference decreased the Cx43 expression and abolished the promoting effect of TGF-β1 on Cx43. Functional GJICs in living primary osteoblasts and MC3T3 cell line were also reduced. TGF-β1-induced increase in N-cadherin and Cx43 was via Smad3 activation, whereas knockdown of Smad3 signaling by using siRNA decreased the expressions of both N-cadherin and Cx43. Overall, these data indicate the direct interactions between N-cadherin and Cx43, and reveal the intervention of adhesion junction in functional gap junction in living osteoblasts.
Cadherins
;
Cell Communication
;
Connexin 43
;
Osteoblasts
;
Transforming Growth Factor beta1
7.Effect of the Connexin 43 Coupling to the Biobehavior of Multiple Myeloma Cells.
Yu SUN ; Yang-Min ZHANG ; Yan-Xia XU ; Yuan-Ning HE ; Li-Ying ZHANG ; Jin-Xiang FU
Journal of Experimental Hematology 2021;29(6):1812-1818
OBJECTIVE:
To investigate the effect of gap junction intercellular communication (GJIC) combined by connexin43 (Cx43) and its signal to the biobehavior of multiple myeloma (MM) cells, and its possible mechanism.
METHODS:
The mesenchymal stem cell (MSC) cells were isolated and cultured from patients with MM and normal donors. The expression of connexin43 (Cx43) in MSC cells from different sources was detected by RT-PCR and Western blot. The side population (SP) cells were sorted by flow cytometry (FCM). The effect of MSC cells from different sources to the cell cycle, Cx43 expression, colony formation in vitro, stem cell related genes expression, cytokines secretion and chemoresistance in MM SP cells as well as with or without Cx43 inhibitor 18α-glycyrrhetinic acid (18α-GA) was observed.
RESULTS:
There was no significantly difference between the MSC isolated from normal donor and MM patients. Western blot showed that Cx43 expression in SP cells was up-regulated when the cells were incubated with MSC, and medium containing 18α-GA could partially inhibit it, moreover, it was more significant in MSC cells of MM patients. The ability of colony formation of SP cells in vitro was higher than those of MM cells and MM-MSC could promote the colony formation in a co-culture manner. The effect of MM-MSC to SP cells was down-regulated after 18α-GA was added. RT-PCR showed that there was several important stem cell-related genes including c-myc, Oct-4 Klf-4, and Sox-2 were found in RPMI 8226 cells, but those cells were up-regulated in SP cells (P<0.001). Meanwhile, MM-MSC could up-regulate the expression of c-myc, Klf-4 and Sox-2 (P<0.001), but down-regulate Oct-4 gene in the SP cells. The expression of those genes decreased after 18α-GA was added, but showed no significant difference (P>0.05). Cytometry bead array assays showed that MM-MSCs could secrete high level of IL-6, but the levels of IL-6, IL-10 and TGF-β increased significantly when the MM-MSCs were co-cultured with SP cells (P<0.05), especially the levels of IL-6 and IL-10 were significantly higher than cultured alone. There was no significant change in the levels of bFGF and IL-17 before and after co-cultured. The levels of IL-6, IL-10 and TGF-β in supernatant decreased significantly after GJ inhibitor 18α-GA was added. PI/Annexin V assay showed that MM cells were sensitive to bortezomib (BTZ)-induced apoptosis, but the sensitivity for SP cells was weaker. The ratio of cell apoptosis was 75.2%±0.77% and 8.12%±0.86% (P<0.001), respectively. MM-MSC could down-regulate the cell apoptosis induced by BTZ, while the sensitivity of MM cells to BTZ could be partially recovered after GJ inhibitor was added.
CONCLUSION
MSC derived from MM patients can enhance GJIC to maintain its "hematopoiesis" by up-regulating the expression of Cx43 in MM cells, and at the same time promote cell proliferation and drug recistance by secreting multiple cytokines, which finally contributes to the relapse of MM.
Cell Communication
;
Coculture Techniques
;
Connexin 43
;
Humans
;
Mesenchymal Stem Cells
;
Multiple Myeloma
8.Neuroprotective potential of imatinib in global ischemia-reperfusion-induced cerebral injury: possible role of Janus-activated kinase 2/signal transducer and activator of transcription 3 and connexin 43
Jieying WANG ; Taomin BAI ; Nana WANG ; Hongyan LI ; Xiangyang GUO
The Korean Journal of Physiology and Pharmacology 2020;24(1):11-18
The present study was aimed to explore the neuroprotective role of imatinib in global ischemia-reperfusion-induced cerebral injury along with possible mechanisms. Global ischemia was induced in mice by bilateral carotid artery occlusion for 20 min, which was followed by reperfusion for 24 h by restoring the blood flow to the brain. The extent of cerebral injury was assessed after 24 h of global ischemia by measuring the locomotor activity (actophotometer test), motor coordination (inclined beam walking test), neurological severity score, learning and memory (object recognition test) and cerebral infarction (triphenyl tetrazolium chloride stain). Ischemia-reperfusion injury produced significant cerebral infarction, impaired the behavioral parameters and decreased the expression of connexin 43 and phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in the brain. A single dose administration of imatinib (20 and 40 mg/kg) attenuated ischemia-reperfusion-induced behavioral deficits and the extent of cerebral infarction along with the restoration of connexin 43 and p-STAT3 levels. However, administration of AG490, a selective Janus-activated kinase 2 (JAK2)/STAT3 inhibitor, abolished the neuroprotective actions of imatinib and decreased the expression of connexin 43 and p-STAT3. It is concluded that imatinib has the potential of attenuating global ischemia-reperfusion-induced cerebral injury, which may be possibly attributed to activation of JAK2/STAT3 signaling pathway along with the increase in the expression of connexin 43.
Animals
;
Brain
;
Carotid Arteries
;
Cerebral Infarction
;
Connexin 43
;
Imatinib Mesylate
;
Ischemia
;
Learning
;
Memory
;
Mice
;
Motor Activity
;
Neuroprotection
;
Phosphotransferases
;
Reperfusion
;
Reperfusion Injury
;
STAT3 Transcription Factor
;
Transducers
;
Walking
9.Expression of connexin 43 in peripheral blood monocytes from patients with acute coronary syndrome.
Jian ZHU ; Yan YANG ; Sigan HU ; Hui LI ; Heng ZHANG
Journal of Southern Medical University 2019;39(4):471-476
OBJECTIVE:
To investigate the expression of connexin 43 (Cx43) in peripheral blood monocytes (PBMCs) from patients with acute coronary syndrome (ACS) and its clinical implications.
METHODS:
We prospectively collected the clinical data from 40 patients with ACS including 20 with unstable angina pectoris (UAP) and 20 with acute myocardial infarction (AMI) admitted in our department between January, 2018 and June, 2018, with 20 healthy subjects undergoing routine physical examinations serving as the control group. Peripheral blood samples were obtained from all the participants and plasma and PBMCs were separated. Enzyme-linked immunosorbent assay (ELISA) and turbidimetric inhibition immunoassay (TIIA) were used for analysis of plasma levels of interleukin (IL)-1β and high sensitive C-reactive protein (hs-CRP), respectively; real-time quantitative RT-PCR and Western blotting were used to detect the mRNA and protein levels of Cx43 in the PBMCs.
RESULTS:
Compared with the control group, the patients with UAP showed significantly increased plasma levels of IL-1β and hs-CRP ( < 0.001) and obviously elevated expressions of Cx43 at both mRNA and protein levels in the PBMCs ( < 0.001). Compared with the patients with UAP, the patients with AMI had significantly higher plasma IL-1β and hs-CRP levels ( < 0.001 and < 0.01) but lower expression levels of Cx43 in the PBMCs ( < 0.05).
CONCLUSIONS
Patients with UAP and AMI have activated inflammatory responses and reverse changes in Cx43 expression in the PBMCs, suggesting the different roles of Cx43 in the pathogenic mechanisms of different types of ACS.
Acute Coronary Syndrome
;
Angina, Unstable
;
C-Reactive Protein
;
Connexin 43
;
Humans
;
Monocytes
10.A heterozygous mutation in GJA1 gene in Chinese family with serious erythrokeratodermia variabilis et progressive.
Bi-Rong GUO ; Hai-Bin CAI ; Wen-Kai ZONG ; Cong-Sheng LI ; Li-Zhong LIU ; Song QIAO ; Qi-Ming ZHU ; Ming LI
Chinese Medical Journal 2019;132(1):86-88
Adult
;
Connexin 43
;
genetics
;
Erythrokeratodermia Variabilis
;
genetics
;
Female
;
Heterozygote
;
Humans
;
Male
;
Mutation
;
genetics
;
Mutation, Missense
;
genetics
;
Pedigree

Result Analysis
Print
Save
E-mail