1.Connexin 43-modified bone marrow stromal cells reverse the imatinib resistance of K562 cells via Ca 2+ -dependent gap junction intercellular communication.
Xiaoping LI ; Yunshuo XIAO ; Xiaoqi WANG ; Ruihao HUANG ; Rui WANG ; Yi DENG ; Jun RAO ; Qiangguo GAO ; Shijie YANG ; Xi ZHANG
Chinese Medical Journal 2023;136(2):194-206
BACKGROUND:
Imatinib mesylate (IM) resistance is an emerging problem for chronic myeloid leukemia (CML). Previous studies found that connexin 43 (Cx43) deficiency in the hematopoietic microenvironment (HM) protects minimal residual disease (MRD), but the mechanism remains unknown.
METHODS:
Immunohistochemistry assays were employed to compare the expression of Cx43 and hypoxia-inducible factor 1α (HIF-1α) in bone marrow (BM) biopsies of CML patients and healthy donors. A coculture system of K562 cells and several Cx43-modified bone marrow stromal cells (BMSCs) was established under IM treatment. Proliferation, cell cycle, apoptosis, and other indicators of K562 cells in different groups were detected to investigate the function and possible mechanism of Cx43. We assessed the Ca 2+ -related pathway by Western blotting. Tumor-bearing models were also established to validate the causal role of Cx43 in reversing IM resistance.
RESULTS:
Low levels of Cx43 in BMs were observed in CML patients, and Cx43 expression was negatively correlated with HIF-1α. We also observed that K562 cells cocultured with BMSCs transfected with adenovirus-short hairpin RNA of Cx43 (BMSCs-shCx43) had a lower apoptosis rate and that their cell cycle was blocked in G0/G1 phase, while the result was the opposite in the Cx43-overexpression setting. Cx43 mediates gap junction intercellular communication (GJIC) through direct contact, and Ca 2+ is the key factor mediating the downstream apoptotic pathway. In animal experiments, mice bearing K562, and BMSCs-Cx43 had the smallest tumor volume and spleen, which was consistent with the in vitro experiments.
CONCLUSIONS
Cx43 deficiency exists in CML patients, promoting the generation of MRD and inducing drug resistance. Enhancing Cx43 expression and GJIC function in the HM may be a novel strategy to reverse drug resistance and promote IM efficacy.
Animals
;
Humans
;
Mice
;
Apoptosis
;
Bone Marrow Cells
;
Cell Communication
;
Connexin 43/genetics*
;
Gap Junctions/metabolism*
;
Imatinib Mesylate/therapeutic use*
;
K562 Cells
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology*
;
Mesenchymal Stem Cells/metabolism*
;
Tumor Microenvironment
;
Calcium/metabolism*
2.Downregulation of cardiac PIASy inhibits Cx43 SUMOylation and ameliorates ventricular arrhythmias in a rat model of myocardial ischemia/reperfusion injury.
Tingting WANG ; Jinmin LIU ; Chenchen HU ; Xin WEI ; Linlin HAN ; Afang ZHU ; Rong WANG ; Zhijun CHEN ; Zhengyuan XIA ; Shanglong YAO ; Weike MAO
Chinese Medical Journal 2023;136(11):1349-1357
BACKGROUND:
Dysfunction of the gap junction channel protein connexin 43 (Cx43) contributes to myocardial ischemia/reperfusion (I/R)-induced ventricular arrhythmias. Cx43 can be regulated by small ubiquitin-like modifier (SUMO) modification. Protein inhibitor of activated STAT Y (PIASy) is an E3 SUMO ligase for its target proteins. However, whether Cx43 is a target protein of PIASy and whether Cx43 SUMOylation plays a role in I/R-induced arrhythmias are largely unknown.
METHODS:
Male Sprague-Dawley rats were infected with PIASy short hairpin ribonucleic acid (shRNA) using recombinant adeno-associated virus subtype 9 (rAAV9). Two weeks later, the rats were subjected to 45 min of left coronary artery occlusion followed by 2 h reperfusion. Electrocardiogram was recorded to assess arrhythmias. Rat ventricular tissues were collected for molecular biological measurements.
RESULTS:
Following 45 min of ischemia, QRS duration and QTc intervals statistically significantly increased, but these values decreased after transfecting PIASy shRNA. PIASy downregulation ameliorated ventricular arrhythmias induced by myocardial I/R, as evidenced by the decreased incidence of ventricular tachycardia and ventricular fibrillation, and reduced arrythmia score. In addition, myocardial I/R statistically significantly induced PIASy expression and Cx43 SUMOylation, accompanied by reduced Cx43 phosphorylation and plakophilin 2 (PKP2) expression. Moreover, PIASy downregulation remarkably reduced Cx43 SUMOylation, accompanied by increased Cx43 phosphorylation and PKP2 expression after I/R.
CONCLUSION
PIASy downregulation inhibited Cx43 SUMOylation and increased PKP2 expression, thereby improving ventricular arrhythmias in ischemic/reperfused rats heart.
Rats
;
Male
;
Animals
;
Myocardial Reperfusion Injury/metabolism*
;
Connexin 43/genetics*
;
Sumoylation
;
Down-Regulation
;
Rats, Sprague-Dawley
;
Arrhythmias, Cardiac/drug therapy*
;
Myocardial Ischemia/metabolism*
;
RNA, Small Interfering/metabolism*
3.Inhibition connexin 43 by mimetic peptide Gap27 mediates protective effects on 6-hydroxydopamine induced Parkinson's disease mouse model.
Hui Hui QUAN ; Wei Xing XU ; Yu Ze QI ; Qing Ru LI ; Hui ZHOU ; Jing HUANG
Journal of Peking University(Health Sciences) 2022;54(3):421-426
OBJECTIVE:
To explore whether the using of mimetic peptide Gap27, a selective inhibitor of connexin 43 (Cx43), could block the death of dopamine neurons and influence the expression of Cx43 in 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease mouse models.
METHODS:
Eighteen C57BL/6 mice were randomly divided into control group, 6-OHDA group and 6-OHDA+Gap27 group, with 6 mice in each group. Bilateral substantia nigra stereotactic injection was performed. The control group was injected with ascorbate solution, 6-OHDA group was injected with 6-OHDA solution, and 6-OHDA+Gap27 group was injected with 6-OHDA and Gap27 mixed solution. Immuno-histochemical staining was used to detect the number of dopamine neurons, quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of Cx43 messenger ribonucleic acid (mRNA), immuno-fluorescence staining was used to detect the distribution of Cx43 protein, the contents of Cx43 protein and Cx43 phosphorylation at serine 368 (Cx43-ps368) in mouse midbrain were detected by Western blot.
RESULTS:
After injection of 6-OHDA, numerous dopamine neurons in substantia nigra died as Cx43 content increased, Cx43-ps368 content decreased. Mixing Gap27 while injecting 6-OHDA could reduce the number of death dopamine neurons and weaken the changes of Cx43 and Cx43-ps368 content caused by 6-OHDA. The number of tyrosine hydroxylase (TH) immunoreactive positive neurons in 6-OHDA group decreased to 27.7% ± 0.02% of the control group (P < 0.01); The number of TH immunoreactive positive neurons in 6-OHDA+Gap27 group was (1.64±0.16) times higher than that in 6-OHDA group (P < 0.05); The content of total Cx43 protein in 6-OHDA group was (1.44±0.07) times higher than that in 6-OHDA+Gap27 group (P < 0.05) while (1.68±0.07) times higher than that in control group (P < 0.01). In 6-OHDA group, the content of Cx43-ps368 protein and its proportion in total Cx43 protein were significantly lower than that in 6-OHDA+Gap27 group (P < 0.05).
CONCLUSION
In 6-OHDA mouse models, mimetic peptide Gap27 played a protective role in reducing the damage to substantia nigra dopamine neurons, which was induced by 6-OHDA. The overexpression of Cx43 protein might have neurotoxicity to dopamine neuron. Meanwhile, decreasing Cx43 protein level and keeping Cx43-ps368 protein level may be the protective mechanisms of Gap27.
Animals
;
Connexin 43/pharmacology*
;
Disease Models, Animal
;
Dopaminergic Neurons/metabolism*
;
Mice
;
Mice, Inbred C57BL
;
Oxidopamine/metabolism*
;
Parkinson Disease/metabolism*
;
Peptides/pharmacology*
;
Tyrosine 3-Monooxygenase/pharmacology*
4.Connexin43 Modulates X-Ray-Induced Pyroptosis in Human Umbilical Vein Endothelial Cells.
Chen LI ; Mei TIAN ; Qiao GOU ; Yong Rui JIA ; Xu SU
Biomedical and Environmental Sciences 2019;32(3):177-188
OBJECTIVE:
Pyroptosis is an inflammatory form of programmed cell death. This phenomenon has been recently reported to play an important role in radiation-induced normal tissue injury. Connexin43 (Cx43) is a gap junction protein that regulates cell growth and apoptosis. In this study, we investigated the effect of Cx43 on X-ray-induced pyroptosis in the human umbilical vein endothelial cells (HUVECs).
METHODS:
HUVECs, Cx43 overexpression, and Cx43 knockdown strains were irradiated with 10 Gy. Proteins were detected using western blot analysis. Cell pyroptosis was evaluated using the fluorescence-labeled inhibitor of caspase assay (FLICA) and propidium iodide staining through flow cytometry and confocal microscopy. Cell morphology and cytotoxicity were detected by scanning electron microscopy and lactate dehydrogenase release assay, respectively.
RESULTS:
Irradiation with 10 Gy X-ray induced pyroptosis in the HUVECs and reduced Cx43 expression. The pyroptosis in the HUVECs was significantly attenuated by overexpression of Cx43 as it decreased the level of active caspase-1. However, interference of Cx43 expression with siRNA significantly promoted pyroptosis by increasing the active caspase-1 level. Pannexin1 (Panx1), a gap junction protein regulates pyroptosis, and its cleaved form is used to evaluate channel opening and active state. The level of cleaved Panx1 in the HUVECs and Cx43 knockdown strains increased in the presence of X-ray, but decreased in the Cx43 overexpression strains. Furthermore, interference of Panx1 with siRNA alleviated the upregulation of pyroptosis caused by Cx43 knockdown.
CONCLUSION
Results suggest that single high-dose X-ray irradiation induces pyroptosis in the HUVECs. In addition, Cx43 regulates pyroptosis directly by activating caspase-1 or indirectly by cleaving Panx1.
Caspase 1
;
genetics
;
metabolism
;
Connexin 43
;
genetics
;
metabolism
;
Connexins
;
genetics
;
metabolism
;
Gene Expression Regulation
;
radiation effects
;
Human Umbilical Vein Endothelial Cells
;
physiology
;
radiation effects
;
Humans
;
Nerve Tissue Proteins
;
genetics
;
metabolism
;
Pyroptosis
;
X-Rays
;
adverse effects
5.Inhibitory effect of connexin43 protein on autophagy in cisplatin-resistant testicular cancer I-10 cells.
Min YUAN ; Shuying DONG ; Yanxue YAO ; Yunzheng MEN ; Kaijin MAO ; Xuhui TONG
Journal of Southern Medical University 2019;39(9):1089-1093
OBJECTIVE:
To investigate the effect of connexin43 (Cx43) protein on autophagy in cisplatin (DDP)-resistant testicular cancer I-10 cells.
METHODS:
The expression of Cx43 proteins in testicular cancer I-10 cells and I-10/DDP cells were detected with Western blotting. I-10/DDP cells were transfected with a full- length mouse Cx43 vector (mCx43) Lipofectamine, the empty vector or Lipofectamine (blank control group), and the changes in the expressions of LC3 and p62 proteins were determined with Western blotting. mCherry-GFP-LC3B transfection and transmission electron microscopy were used to analyze the changes in autophagy of the cells with Cx43 overexpression.
RESULTS:
Cx43 was significantly decreased in I-10/DDP cells compared with I-10 cells ( < 0.01). Transfection of the I-10/DDP cells with mCx43 vector resulted in significantly increased Cx43 expression in the cells ( < 0.01) and caused significantly decreased expression of LC3-Ⅱ ( < 0.01) and increased expression of p62 ( < 0.05) as compared with the negative control cells. Both transmission electron microscopy and mCherry-GFP-LC3B transfection showed that the number of autophagosomes was obviously reduced in mCx43-transfected cells as compared with the negative control cells.
CONCLUSIONS
Cx43 inhibits autophagy in cisplatin-resistant testicular cancer I-10 /DDP cells.
Animals
;
Autophagy
;
Cell Line, Tumor
;
Cisplatin
;
Connexin 43
;
metabolism
;
Drug Resistance, Neoplasm
;
Male
;
Mice
;
Testicular Neoplasms
;
metabolism
;
pathology
6.Effects of Ramipril on the expression of connexin 43 in cerebral arteries of spontaneously hypertensive rats.
Tian TIAN ; Chao-Yang TAN ; Qi-Hua JIA ; Wen-Wen CONG ; Jun-Jie TIAN ; Ke-Tao MA ; Li LI ; Jun-Qiang SI
Acta Physiologica Sinica 2019;71(3):395-404
The present study was designed to examine whether Ramipril (an inhibitor of angiotensin-converting enzyme) affected spontaneous hypertension-induced injury of cerebral artery by regulating connexin 43 (Cx43) expression. Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) were randomly divided into WKY, WKY + Ramipril, SHR, and SHR + Ramipril groups (n = 8). The arterial pressure was monitored by the tail-cuff method, and vascular function in basilar arteries was examined by pressure myography. Hematoxylin-eosin (HE) staining was used to show vascular remodeling. The expression and distribution of Cx43 was determined by using immunofluorescence and immunohistochemistry analysis. The protein and mRNA levels of Cx43 were examined by Western blot and real-time PCR analysis, respectively. The results showed that chronic Ramipril treatment significantly attenuated blood pressure elevation (P < 0.01, n = 8) and blood vessel wall thickness in SHR (P < 0.01, n = 8). The cerebral artery contraction rate in the SHR group was higher than that in the WKY group (P < 0.05, n = 8). The cerebral artery contraction rate in the SHR + Ramipril group was lower than that in the SHR group (P < 0.05, n = 8). Pretreatment with 2-APB (Cx43 non-specific blocker) or Gap26 (Cx43 specific blocker) significantly decreased the vasoconstriction rate, while pretreatment with AAP10 (Cx43 non-specific agonist) significantly increased the vasoconstriction in the SHR + Ramipril group (P < 0.05, n = 8). In addition, the expression of Cx43 mRNA and protein in cerebral arteries of SHR group was higher than that of WKY group (P < 0.05, n = 8). The mRNA and protein expression of Cx43 in cerebral arteries of SHR + Ramipril group was significantly lower than that of SHR group (P < 0.05, n = 8). These results suggest that Ramipril can down-regulate the expression of Cx43 mRNA and protein in cerebral arterial cells of SHR, lower blood pressure, promote vasodilation, and improve arterial damage and vascular dysfunction caused by hypertension.
Animals
;
Blood Pressure
;
Cerebral Arteries
;
drug effects
;
metabolism
;
Connexin 43
;
metabolism
;
Hypertension
;
drug therapy
;
Ramipril
;
pharmacology
;
Random Allocation
;
Rats
;
Rats, Inbred SHR
;
Rats, Inbred WKY
;
Vascular Remodeling
7.Expression of Cx43 and Cx45 in Cardiomyocytes of an Overworked Rat Model.
Bo Fan YANG ; Jing Zhuo SHI ; Jing LI ; Yu Peng PAN ; Ning XIAO ; Yan Geng YU ; Fu ZHANG ; Hui Jun WANG ; Dong Ri LI
Journal of Forensic Medicine 2019;35(5):567-571
Objective To study the effect of overwork stress response on the expression of connexin 43(Cx43) and connexin 45(Cx45) in cardiomyocytes and on cardiac function. Methods The experimental animals were divided into control group, overworked 1-month group and overworked 2-month group. A overworked rat model was established by forcing swimming of overworked group. The expressions of Cx43 and Cx45 in myocardial tissues of experimental animals were detected by Western blotting, while the corresponding myocardial tissues were stained with hematoxylin-eosin (HE) staining and Masson's staining, then histologically observed. Results Western blotting results showed that, compared with the control group, Cx43 expression in myocardial tissues of overworked rats decreased while Cx45 expression increased. HE staining and Masson's staining results showed that hypertrophy, rupture and interstitial fiber tissue hyperplasia were observed in myocardial fibers of overworked rats. Conclusion Overwork stress response may affect cardiac function as an independent factor and may even cause heart failure or arrhythmias and lead to death.
Animals
;
Arrhythmias, Cardiac/metabolism*
;
Connexin 43/metabolism*
;
Connexins/metabolism*
;
Heart Failure
;
Myocardium
;
Myocytes, Cardiac/metabolism*
;
Rats
8.Effects of total flavonids of astragalus on arrhythmia,endoplasmic reticulum stress in mice with viral myocarditis.
Hao LIU ; Bate HURILE ; Ying XIONG ; Cheng-Xi WEI ; Li-Ying XUAN ; Yu WANG ; Ming ZHAO
Chinese Journal of Applied Physiology 2018;34(1):16-18
OBJECTIVE:
To investigate the effects of total flavonids of astragalus(TFA) on arrhythmia, endoplasmic reticulum stress and connexcin in mice with viral myocarditis and to clarify the mechanisms of TFA against viral myocarditis complicated with arrhythmia.
METHODS:
Thirty-six male Balb/c mice were randomly divided into control group, viral myocarditis group and total flavonoids group (=12). The mice of viral myocarditis were intraperitonealy injected with 0.1 ml/day 10-950 TCID CVB3 for 3 days. The mice of TFA group were intraperitoneal injected with 0.1 ml/day 10-950 TCID CVB3 for 3 days and treated with 0.1ml, 20 mg/L TFA by tail vein injection. At the end of the experiment, arrhythmia was detected by electrocardiogram, the heart of mice were stained by HE, the expressions of glucose-regulated protein 78(GRP78), endoplasmic reticulum stress signaling pathway factor activating transcription factor 4(ATF4) and connexcin 43(Cx43) were detected by Western blot.
RESULTS:
The expressions of GRP78 and ATF4 were increased and the expression of Cx43 was decreased in viral myocarditis, while TFA inhibited these effect of viral myocarditis in heart of mice.
CONCLUSIONS
The antiarrhythmic effect of TFA may be related to the alleviation of endoplasmic reticulum stress and the increase of Cx43 expression.
Activating Transcription Factor 4
;
metabolism
;
Animals
;
Arrhythmias, Cardiac
;
drug therapy
;
Astragalus Plant
;
chemistry
;
Connexin 43
;
metabolism
;
Coxsackievirus Infections
;
drug therapy
;
Drugs, Chinese Herbal
;
pharmacology
;
Endoplasmic Reticulum Stress
;
drug effects
;
Flavonoids
;
pharmacology
;
Heat-Shock Proteins
;
metabolism
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Myocarditis
;
drug therapy
;
virology
;
Myocardium
9.Sex-Dependent Glial Signaling in Pathological Pain: Distinct Roles of Spinal Microglia and Astrocytes.
Gang CHEN ; Xin LUO ; M Yawar QADRI ; Temugin BERTA ; Ru-Rong JI
Neuroscience Bulletin 2018;34(1):98-108
Increasing evidence suggests that spinal microglia regulate pathological pain in males. In this study, we investigated the effects of several microglial and astroglial modulators on inflammatory and neuropathic pain following intrathecal injection in male and female mice. These modulators were the microglial inhibitors minocycline and ZVEID (a caspase-6 inhibitor) and the astroglial inhibitors L-α-aminoadipate (L-AA, an astroglial toxin) and carbenoxolone (a connexin 43 inhibitor), as well as U0126 (an ERK kinase inhibitor) and D-JNKI-1 (a c-Jun N-terminal kinase inhibitor). We found that spinal administration of minocycline or ZVEID, or Caspase6 deletion, reduced formalin-induced inflammatory and nerve injury-induced neuropathic pain primarily in male mice. In contrast, intrathecal L-AA reduced neuropathic pain but not inflammatory pain in both sexes. Intrathecal U0126 and D-JNKI-1 reduced neuropathic pain in both sexes. Nerve injury caused spinal upregulation of the astroglial markers GFAP and Connexin 43 in both sexes. Collectively, our data confirmed male-dominant microglial signaling but also revealed sex-independent astroglial signaling in the spinal cord in inflammatory and neuropathic pain.
2-Aminoadipic Acid
;
toxicity
;
Animals
;
Anti-Inflammatory Agents
;
therapeutic use
;
Astrocytes
;
pathology
;
Carbenoxolone
;
pharmacology
;
Caspase 6
;
deficiency
;
metabolism
;
Connexin 43
;
metabolism
;
Disease Models, Animal
;
Dose-Response Relationship, Drug
;
Enzyme Inhibitors
;
pharmacology
;
Female
;
Glial Fibrillary Acidic Protein
;
metabolism
;
Male
;
Mice
;
Mice, Transgenic
;
Microglia
;
pathology
;
Minocycline
;
therapeutic use
;
Neuralgia
;
chemically induced
;
drug therapy
;
pathology
;
Pain Measurement
;
Phenylurea Compounds
;
pharmacology
;
Sex Characteristics
;
Spinal Cord
;
pathology
;
Time Factors
10.Correlation of connexin 43 with testicular tumors.
National Journal of Andrology 2017;23(3):267-270
Gap junctions (GJ), as a special membrane structure between adjacent cells, are composed of connexins (Cx) and regulate the proliferation and differentiation of cells. Studies show that gap junctional intercellular communication is weakened or lost in most tumor cells and this abnormality is often accompanied by changed expression of Cxs. Cx43 is a major connexin in the testis tissue. This review focuses on the latest progress in the studies of Cx43 in testicular tumors.
Animals
;
Cell Communication
;
Cell Differentiation
;
Connexin 43
;
metabolism
;
Gap Junctions
;
metabolism
;
Male
;
Testicular Neoplasms
;
metabolism

Result Analysis
Print
Save
E-mail