1.Effects of VX765 on osteoarthritis and chondrocyte inflammation in rats.
Wanran HUANG ; Junxue TU ; Aiqing QIAO ; Chujun HE
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(1):74-81
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effects and underlying mechanisms of VX765 on osteoarthritis (OA) and chondrocytes inflammation in rats.
		                        		
		                        			METHODS:
		                        			Chondrocytes were isolated from the knee joints of 4-week-old Sprague Dawley (SD) rats. The third-generation cells were subjected to cell counting kit 8 (CCK-8) analysis to assess the impact of various concentrations (0, 1, 5, 10, 20, 50, 100 μmol/L) of VX765 on rat chondrocyte activity. An in vitro lipopolysaccharide (LPS) induced cell inflammation model was employed, dividing cells into control group, LPS group, VX765 concentration 1 group and VX765 concentration 2 group without obvious cytotoxicity. Western blot, real-time fluorescence quantitative PCR, and ELISA were conducted to measure the expression levels of inflammatory factors-transforming growth factor β 1 (TGF-β 1), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α). Additionally, Western blot and immunofluorescence staining were employed to assess the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Thirty-two SD rats were randomly assigned to sham surgery group (group A), OA group (group B), OA+VX765 (50 mg/kg) group (group C), and OA+VX765 (100 mg/kg) group (group D), with 8 rats in each group. Group A underwent a sham operation with a medial incision, while groups B to D underwent additional transverse incisions to the medial collateral ligament and anterior cruciate ligament, with removal of the medial meniscus. One week post-surgery, groups C and D were orally administered 50 mg/kg and 100 mg/kg VX765, respectively, while groups A and B received an equivalent volume of saline. Histopathological examination using HE and safranin-fast green staining was performed, and Mankin scoring was utilized for evaluation. Immunohistochemical staining technique was employed to analyze the expressions of matrix metalloproteinase 13 (MMP-13) and collagen type Ⅱ.
		                        		
		                        			RESULTS:
		                        			The CCK-8 assay indicated a significant decrease in cell viability at VX765 concentrations exceeding 10 μmol/L ( P<0.05), so 4 μmol/L and 8 μmol/L VX765 without obvious cytotoxicity were selected for subsequent experiments. Following LPS induction, the expressions of TGF-β 1, IL-6, and TNF-α in cells significantly increased when compared with the control group ( P<0.05). However, intervention with 4 μmol/L and 8 μmol/L VX765 led to a significant decrease in expression compared to the LPS group ( P<0.05). Western blot and immunofluorescence staining demonstrated a significant upregulation of Nrf2 pathway-related molecules Nrf2 and HO-1 protein expressions by VX765 ( P<0.05), indicating Nrf2 pathway activation. Histopathological examination of rat knee joint tissues and immunohistochemical staining revealed that, compared to group B, treatment with VX765 in groups C and D improved joint structural damage in rat OA, alleviated inflammatory reactions, downregulated MMP-13 expression, and increased collagen type Ⅱ expression.
		                        		
		                        			CONCLUSION
		                        			VX765 can improve rat OA and reduce chondrocyte inflammation, possibly through the activation of the Nrf2 pathway.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Chondrocytes/metabolism*
		                        			;
		                        		
		                        			Matrix Metalloproteinase 13/metabolism*
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Collagen Type II/metabolism*
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			Lipopolysaccharides/pharmacology*
		                        			;
		                        		
		                        			NF-E2-Related Factor 2/pharmacology*
		                        			;
		                        		
		                        			Inflammation/drug therapy*
		                        			;
		                        		
		                        			Osteoarthritis/metabolism*
		                        			;
		                        		
		                        			Transforming Growth Factor beta1/metabolism*
		                        			;
		                        		
		                        			Dipeptides
		                        			;
		                        		
		                        			para-Aminobenzoates
		                        			
		                        		
		                        	
2.Role and mechanism of macrophage-mediated osteoimmune in osteonecrosis of the femoral head.
Yushun WANG ; Jianrui ZHENG ; Yuhong LUO ; Lei CHEN ; Zhigang PENG ; Gensen YE ; Deli WANG ; Zhen TAN
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(1):119-124
		                        		
		                        			OBJECTIVE:
		                        			To summarize the research progress on the role of macrophage-mediated osteoimmune in osteonecrosis of the femoral head (ONFH) and its mechanisms.
		                        		
		                        			METHODS:
		                        			Recent studies on the role and mechanism of macrophage-mediated osteoimmune in ONFH at home and abroad were extensively reviewed. The classification and function of macrophages were summarized, the osteoimmune regulation of macrophages on chronic inflammation in ONFH was summarized, and the pathophysiological mechanism of osteonecrosis was expounded from the perspective of osteoimmune, which provided new ideas for the treatment of ONFH.
		                        		
		                        			RESULTS:
		                        			Macrophages are important immune cells involved in inflammatory response, which can differentiate into classically activated type (M1) and alternatively activated type (M2), and play specific functions to participate in and regulate the physiological and pathological processes of the body. Studies have shown that bone immune imbalance mediated by macrophages can cause local chronic inflammation and lead to the occurrence and development of ONFH. Therefore, regulating macrophage polarization is a potential ONFH treatment strategy. In chronic inflammatory microenvironment, inhibiting macrophage polarization to M1 can promote local inflammatory dissipation and effectively delay the progression of ONFH; regulating macrophage polarization to M2 can build a local osteoimmune microenvironment conducive to bone repair, which is helpful to necrotic tissue regeneration and repair to a certain extent.
		                        		
		                        			CONCLUSION
		                        			At present, it has been confirmed that macrophage-mediated chronic inflammatory immune microenvironment is an important mechanism for the occurrence and development of ONFH. It is necessary to study the subtypes of immune cells in ONFH, the interaction between immune cells and macrophages, and the interaction between various immune cells and macrophages, which is beneficial to the development of potential therapeutic methods for ONFH.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Femur Head/pathology*
		                        			;
		                        		
		                        			Osteonecrosis/therapy*
		                        			;
		                        		
		                        			Macrophages/pathology*
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			Femur Head Necrosis/pathology*
		                        			
		                        		
		                        	
3.IL-6 enhances the phagocytic function of mouse alveolar macrophages by activating the JAK2/STAT3 signaling pathway.
Mengqing HUA ; Peiyu GAO ; Fang FANG ; Haoyu SU ; Chuanwang SONG
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):13-18
		                        		
		                        			
		                        			Objective To investigate the effect of interleukin-6 (IL-6) on the phagocytosis of MH-S alveolar macrophages and its related mechanisms. Methods A mouse acute lung injury (ALI) model was constructed by instilling lipopolysaccharide (LPS) into the airway. ELISA was used to detect the content of IL-6 in bronchoalveolar lavage fluid (BALF). In vitro cultured MH-S cells, in the presence or absence of signal transducer and activator 3 of transcription(STAT3) inhibitor Stattic (5 μmol/L), IL-6 (10 ng/mL~500 ng/mL) was added to stimulate for 6 hours, and then incubated with fluorescent microspheres for 2 hours. The phagocytosis of MH-S cells was detected by flow cytometry. Western blot analysis was used to detect the expression levels of phosphorylated Janus kinase 2 (p-JAK2), phosphorylated STAT3 (p-STAT3), actin-related protein 2 (Arp2) and filamentous actin (F-actin). Results The content of IL-6 in BALF was significantly increased after the mice were injected with LPS through the airway. With the increase of IL-6 stimulation concentration, the phagocytic function of MH-S cells was enhanced, and the expression levels of Arp2 and F-actin proteins in MH-S cells were increased. The expression levels of p-JAK2 and p-STAT3 proteins increased in MH-S cells stimulated with IL-6(100 ng/mL). After blocking STAT3 signaling, the effect of IL-6 in promoting phagocytosis of MH-S cells disappeared completely, and the increased expression of Arp2 and F-actin proteins in MH-S cells induced by IL-6 was also inhibited. Conclusion IL-6 promotes the expression of Arp2 and F-actin proteins by activating the JAK2/STAT3 signaling pathway, thereby enhancing the phagocytic function of MH-S cells.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Actins
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			Janus Kinase 2
		                        			;
		                        		
		                        			Lipopolysaccharides
		                        			;
		                        		
		                        			Macrophages, Alveolar
		                        			;
		                        		
		                        			Signal Transduction
		                        			
		                        		
		                        	
4.Single-Cell Mapping of Brain Myeloid Cell Subsets Reveals Key Transcriptomic Changes Favoring Neuroplasticity after Ischemic Stroke.
Fangxi LIU ; Xi CHENG ; Chuansheng ZHAO ; Xiaoqian ZHANG ; Chang LIU ; Shanshan ZHONG ; Zhouyang LIU ; Xinyu LIN ; Wei QIU ; Xiuchun ZHANG
Neuroscience Bulletin 2024;40(1):65-78
		                        		
		                        			
		                        			Interactions between brain-resident and peripheral infiltrated immune cells are thought to contribute to neuroplasticity after cerebral ischemia. However, conventional bulk sequencing makes it challenging to depict this complex immune network. Using single-cell RNA sequencing, we mapped compositional and transcriptional features of peri-infarct immune cells. Microglia were the predominant cell type in the peri-infarct region, displaying a more diverse activation pattern than the typical pro- and anti-inflammatory state, with axon tract-associated microglia (ATMs) being associated with neuronal regeneration. Trajectory inference suggested that infiltrated monocyte-derived macrophages (MDMs) exhibited a gradual fate trajectory transition to activated MDMs. Inter-cellular crosstalk between MDMs and microglia orchestrated anti-inflammatory and repair-promoting microglia phenotypes and promoted post-stroke neurogenesis, with SOX2 and related Akt/CREB signaling as the underlying mechanisms. This description of the brain's immune landscape and its relationship with neurogenesis provides new insight into promoting neural repair by regulating neuroinflammatory responses.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Ischemic Stroke
		                        			;
		                        		
		                        			Brain/metabolism*
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			Brain Ischemia/metabolism*
		                        			;
		                        		
		                        			Microglia/metabolism*
		                        			;
		                        		
		                        			Gene Expression Profiling
		                        			;
		                        		
		                        			Anti-Inflammatory Agents
		                        			;
		                        		
		                        			Neuronal Plasticity/physiology*
		                        			;
		                        		
		                        			Infarction/metabolism*
		                        			
		                        		
		                        	
5.Tumor-associated telocytes.
Chinese Medical Journal 2024;137(4):490-492
6.Mechanism of bilobalide promoting neuroprotection of macrophages.
Yang-Yang CHEN ; Wen-Yuan JU ; Guo-Guo CHU ; Xiao-Hui LI ; Ru-Heng WEI ; Qing WANG ; Bao-Guo XIAO ; Cun-Gen MA
China Journal of Chinese Materia Medica 2023;48(15):4201-4207
		                        		
		                        			
		                        			This study aims to explore the neuroprotective effect of bilobalide(BB) and the mechanisms such as inhibiting inflammatory response in macrophage/microglia, promoting neurotrophic factor secretion, and interfering with the activation and differentiation of peripheral CD4~+ T cells. BB of different concentration(12.5, 25, 50, 100 μg·mL~(-1)) was used to treat the RAW264.7 and BV2 cells for 24 h. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay and cell counting kit-8(CCK-8) were employed to detect the cytotoxicity of BB and appropriate concentration was selected for further experiment. Lipopolysaccharide(LPS) was applied to elicit inflammation in RAW264.7 and BV2 cells, mouse bone marrow-derived macrophages(BMDMs), and primary microglia, respectively. The effect of BB on cell proliferation and secretion of inflammatory cytokines and neurotrophic factors was detected by enzyme-linked immunosorbent assay(ELISA). Spleen monocytes of C57BL/6 female mice(7-8 weeks old) were isolated, and CD4~+ T cells were separated by magnetic beads under sterile conditions. Th17 cells were induced by CD3/CD28 and the conditioned medium for eliciting the inflammation in BMDMs. The content of IL-17 cytokines in the supernatant was detected by ELISA to determine the effect on the activation and differentiation of CD4~+ T cells. In addition, PC12 cells were incubated with the conditioned medium for eliciting inflammation in BMDMs and primary microglia and the count and morphology of cells were observed. The cytoto-xicity was determined by lactate dehydrogenase(LDH) assay. The result showed that BB with the concentration of 12.5-100 μg·mL~(-1) had no toxicity to RAW264.7 and BV2 cells, and had no significant effect on the activity of cell model with low inflammation. The 50 μg·mL~(-1) BB was selected for further experiment, and the results indicated that BB inhibited LPS-induced secretion of inflammatory cytokines. The experiment on CD4~+ T cells showed that the conditioned medium for LPS-induced inflammation in BMDMs promoted the activation and differentiation of CD4~+ T cells, while the conditioned medium of the experimental group with BB intervention reduced the activation and differentiation of CD4~+ T cells. In addition, BB also enhanced the release of neurotrophic factors from BMDMs and primary microglia. The conditioned medium after BB intervention can significantly reduce the death of PC12 neurons, inhibit neuronal damage, and protect neurons. To sum up, BB plays a neuroprotective role by inhibiting macrophage and microglia-mediated inflammatory response and promoting neurotrophic factors.
		                        		
		                        		
		                        		
		                        			Female
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Bilobalides/pharmacology*
		                        			;
		                        		
		                        			Neuroprotection
		                        			;
		                        		
		                        			Lipopolysaccharides/toxicity*
		                        			;
		                        		
		                        			Culture Media, Conditioned/pharmacology*
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Macrophages/metabolism*
		                        			;
		                        		
		                        			Microglia
		                        			;
		                        		
		                        			Cytokines/metabolism*
		                        			;
		                        		
		                        			Nerve Growth Factors/pharmacology*
		                        			;
		                        		
		                        			Inflammation/metabolism*
		                        			
		                        		
		                        	
7.Cangxi Tongbi Capsules promote chondrocyte autophagy by regulating circRNA_0008365/miR-1271/p38 MAPK pathway to inhibit development of knee osteoarthritis.
Wen-Peng XIE ; Teng MA ; Yan-Chen LIANG ; Xiang-Peng WANG ; Rong-Xiu BI ; Wei-Guo WANG ; Yong-Kui ZHANG
China Journal of Chinese Materia Medica 2023;48(18):4843-4851
		                        		
		                        			
		                        			To investigate the mechanism by which Cangxi Tongbi Capsules promote chondrocyte autophagy to inhibit knee osteoarthritis(KOA) progression by regulating the circRNA_0008365/miR-1271/p38 mitogen-activated protein kinase(MAPK) pathway. The cell and animal models of KOA were established and intervened with Cangxi Tongbi Capsules, si-circRNA_0008365, si-NC, and Cangxi Tongbi Capsules combined with si-circRNA_0008365. Flow cytometry and transmission electron microscopy were employed to determine the level of apoptosis and observe autophagosomes, respectively. Western blot was employed to reveal the changes in the protein levels of microtubule-associated protein light chain 3(LC3)Ⅱ/Ⅰ, Beclin-1, selective autophagy junction protein p62/sequestosome 1, collagen Ⅱ, a disintegrin and metalloproteinase with thrombospondin motifs 5(ADAMTS-5), and p38 MAPK. The mRNA levels of circRNA_0008365, miR-1271, collagen Ⅱ, and ADAMTS-5 were determined by qRT-PCR. Hematoxylin-eosin staining was employed to reveal the pathological changes of the cartilage tissue of the knee, and enzyme-linked immunosorbent assay to measure the levels of interleukin-1β(IL-1β) and tumor necrosis factor-alpha(TNF-α). The chondrocytes treated with IL-1β showed down-regulated expression of circRNA_0008365, up-regulated expression of miR-1271 and p38 MAPK, lowered autophagy level, increased apoptosis rate, and accelerated catabolism of extracellular matrix. The intervention with Cangxi Tongbi Capsules up-regulated the expression of circRNA_0008365, down-regulated the expression of miR-1271 and p38 MAPK, increased the autophagy level, decreased the apoptosis rate, and weakened the catabolism of extracellular matrix. However, the effect of Cangxi Tongbi Capsules was suppressed after interfering with circRNA_0008365. The in vivo experiments showed that Cangxi Tongbi Capsules dose-dependently inhibited the p38 MAPK pathway, enhanced chondrocyte autophagy, and mitigated articular cartilage damage and inflammatory response, thereby inhibiting the progression of KOA in rats. This study indicated that Cangxi Tongbi Capsules promoted chondrocyte autophagy by regulating the circRNA_0008365/miR-1271/p38 MAPK pathway to inhibit the development of KOA.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Chondrocytes
		                        			;
		                        		
		                        			Osteoarthritis, Knee/pathology*
		                        			;
		                        		
		                        			RNA, Circular/pharmacology*
		                        			;
		                        		
		                        			p38 Mitogen-Activated Protein Kinases/metabolism*
		                        			;
		                        		
		                        			MicroRNAs/metabolism*
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Autophagy/genetics*
		                        			;
		                        		
		                        			Collagen/metabolism*
		                        			
		                        		
		                        	
8.Effect of Juanbi Qianggu Formula on biological behaviors of fibroblast-like synoviocytes in rheumatoid arthritis by regulating FGFR1 signaling pathway based on network pharmacology and cell function experiments.
Xiao-Hui MENG ; Sheng ZHONG ; Hai-Hui HAN ; Qi SHI ; Song-Tao SUN ; Lian-Bo XIAO
China Journal of Chinese Materia Medica 2023;48(18):4864-4873
		                        		
		                        			
		                        			This study aimed to explore the molecular mechanism of Juanbi Qianggu Formula(JBQGF), an empirical formula formulated by the prestigious doctor in traditional Chinese medicine, in the treatment of rheumatoid arthritis based on network pharmacology and cell function experiments. The main active components and targets of JBQGF were obtained through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and Encyclopedia of Traditional Chinese Medicine(ETCM), and the core targets underwent functional enrichment analysis and signaling pathway analysis. Cytoscape 3.6.0 was used to construct a visualized "active component-target-signaling pathway" network of JBQGF. After screening, nine potential pathways of JBQGF were obtained, mainly including G protein-coupled receptor signaling pathway and tyrosine kinase receptor signaling pathway. As previously indicated, the fibroblast growth factor receptor 1(FGFR1) signaling pathway was highly activated in active fibroblast-like synoviocytes(FLS) in rheumatoid arthritis, and cell and animal experiments demonstrated that inhibition of the FGFR1 signaling pathway could significantly reduce joint inflammation and joint destruction in collagen-induced arthritis(CIA) rats. In terms of the tyrosine kinase receptor signal transduction pathway, the analysis of its target genes revealed that FGFR1 might be a potential target of JBQGF for rheumatoid arthritis treatment. The biological effect of JBQGF by inhibiting FGFR1 phosphorylation was preliminarily verified by Western blot, Transwell invasion assay, and pannus erosion assay, thereby inhibiting matrix metalloproteinase 2(MMP2) and receptor activator of nuclear factor-κB ligand(RANKL) and suppressing the invasion of fibroblasts in rheumatoid arthritis and erosive effect of pannus bone. This study provides ideas for searching potential targets of rheumatoid arthritis treatment and TCM drugs through network pharmacology.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Synoviocytes
		                        			;
		                        		
		                        			Matrix Metalloproteinase 2/metabolism*
		                        			;
		                        		
		                        			Network Pharmacology
		                        			;
		                        		
		                        			Receptor, Fibroblast Growth Factor, Type 1/therapeutic use*
		                        			;
		                        		
		                        			Arthritis, Rheumatoid/genetics*
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Fibroblasts
		                        			;
		                        		
		                        			Drugs, Chinese Herbal/therapeutic use*
		                        			
		                        		
		                        	
9.Potential targets for traditional Chinese medicine treatment of chronic inflammation in obesity: macrophage polarization.
Ji-Xin LI ; Lin-Jie QIU ; Yan REN ; Wen-Ru WANG ; Zhen-Yu YANG ; Mei-Jie LI ; Jin ZHANG
China Journal of Chinese Materia Medica 2023;48(19):5113-5121
		                        		
		                        			
		                        			Obesity has been identified as a chronic low-grade systemic inflammation and a key risk factor for diseases such as diabetes, hypertension, and malignancies, and has become an urgent global health burden. Adipose tissue macrophages play a significant role in adipose immune homeostasis and inflammatory responses. Under different conditions, they can be polarized into pro-inflammatory M1 phenotype or anti-inflammatory M2 phenotype. In obese individuals, there is abnormal polarization of macrophages in adipose tissue, leading to an imbalance in the M1/M2 phenotype dynamic equilibrium and the development of pathological inflammation. Therefore, restoring the balance of M1/M2 macrophage polarization is an important potential target for the treatment of chronic inflammation in obesity. Studies have shown that traditional Chinese medicine(TCM) can positively modulate macrophage polarization and produce beneficial effects on obesity. Based on existing evidence, this paper systematically reviewed the potential mechanisms of TCM in improving chronic inflammation in obesity from the perspective of macrophage polarization, in order to provide evidence for the clinical diagnosis and treatment of chronic inflammation in obesity with TCM and offer new insights for related research design and the development of new TCM.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Medicine, Chinese Traditional
		                        			;
		                        		
		                        			Obesity/drug therapy*
		                        			;
		                        		
		                        			Adipose Tissue/pathology*
		                        			;
		                        		
		                        			Inflammation/drug therapy*
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			
		                        		
		                        	
10.Vitamin D receptor (VDR) mediates the quiescence of activated hepatic stellate cells (aHSCs) by regulating M2 macrophage exosomal smooth muscle cell-associated protein 5 (SMAP-5).
Xuwentai LIU ; Yue WU ; Yanyi LI ; Kaiming LI ; Siyuan HOU ; Ming DING ; Jingmin TAN ; Zijing ZHU ; Yingqi TANG ; Yuming LIU ; Qianhui SUN ; Cong WANG ; Can ZHANG
Journal of Zhejiang University. Science. B 2023;24(3):248-261
		                        		
		                        			
		                        			An effective therapeutic regimen for hepatic fibrosis requires a deep understanding of the pathogenesis mechanism. Hepatic fibrosis is characterized by activated hepatic stellate cells (aHSCs) with an excessive production of extracellular matrix. Although promoted activation of HSCs by M2 macrophages has been demonstrated, the molecular mechanism involved remains ambiguous. Herein, we propose that the vitamin D receptor (VDR) involved in macrophage polarization may regulate the communication between macrophages and HSCs by changing the functions of exosomes. We confirm that activating the VDR can inhibit the effect of M2 macrophages on HSC activation. The exosomes derived from M2 macrophages can promote HSC activation, while stimulating VDR alters the protein profiles and reverses their roles in M2 macrophage exosomes. Smooth muscle cell-associated protein 5 (SMAP-5) was found to be the key effector protein in promoting HSC activation by regulating autophagy flux. Building on these results, we show that a combined treatment of a VDR agonist and a macrophage-targeted exosomal secretion inhibitor achieves an excellent anti-hepatic fibrosis effect. In this study, we aim to elucidate the association between VDR and macrophages in HSC activation. The results contribute to our understanding of the pathogenesis mechanism of hepatic fibrosis, and provide potential therapeutic targets for its treatment.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Hepatic Stellate Cells/pathology*
		                        			;
		                        		
		                        			Receptors, Calcitriol
		                        			;
		                        		
		                        			Liver Cirrhosis/pathology*
		                        			;
		                        		
		                        			Macrophages/metabolism*
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail