1.Clinical Significance of Thrombospondin Type 1 Domain-Containing 7A and Neural Epidermal Growth Factor-Like 1 Protein in M-Type Phospholipase A2 Receptor-Negative Membranous Nephropathy.
Xuan-Li TANG ; Yuan-Yuan DU ; Jin YU ; Tian YE ; Hong ZHU ; Yin-Feng CHEN ; Xiao-Hong LI
Acta Academiae Medicinae Sinicae 2023;45(2):235-244
Objective To investigate the clinical significance of thrombospondin type 1 domain-containing 7A (THSD7A) and neural epidermal growth factor-like 1 protein (NELL1) in phospholipase A2 receptor (PLA2R)-negative membranous nephropathy (MN). Methods A total of 116 PLA2R-negative MN patients treated in Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University from 2014 to 2021 were enrolled in this study.Immunohistochemistry was employed to detect THSD7A and NELL1 in the renal tissue.The pathological characteristics,treatment,and prognosis were compared between positive and negative groups. Results The 116 PLA2R-negative MN patients included 23 THSD7A-positive patients and 9 NELL1-positive patients.One patient was tested positive for both proteins.The THSD7A-positive group showed higher positive rate of IgG4 (P=0.010),more obvious glomerular basement membrane (GBM) thickening (P=0.034),and higher proportion of stage Ⅱ MN and lower proportion of stage I MN (P=0.002) than the THSD7A-negative group.The NELL1-positive group had lower positive rates of C1q and IgG2 (P=0.029,P=0.001),less obvious GBM thickening (P<0.001),more extensive inflammatory cell infiltration (P=0.033),lower proportion of deposits on multi-locations (P=0.001),and lower proportion of atypical MN (P=0.010) than the NELL1-negative group.One patient with THSD7A-positive MN was diagnosed with colon cancer,while none of the NELL1-positive patients had malignancy.Survival analysis suggested that THSD7A-positive MN had worse composite remission (either complete remission or partial remission) of nephrotic syndrome than the negative group (P=0.016),whereas NELL1-positive MN exhibited better composite remission of nephrotic syndrome than the negative group (P=0.015).The MN patients only positive for NELL1 showed better composite remission of nephrotic syndrome than the MN patients only positive for THSD7A (P<0.001). Conclusions THSD7A- and NELL1-positive MN is more likely to be primary MN,and there is no significant malignancy indication.However,it might have a predictive value for the prognosis of MN.
Humans
;
Autoantibodies
;
Clinical Relevance
;
Colonic Neoplasms
;
EGF Family of Proteins
;
Glomerulonephritis, Membranous/diagnosis*
;
Nephrotic Syndrome
;
Receptors, Phospholipase A2/metabolism*
;
Thrombospondins/metabolism*
2.Aerobic glycolysis in colon cancer is repressed by naringin via the HIF1Α pathway.
Guangtao PAN ; Ping ZHANG ; Aiying CHEN ; Yu DENG ; Zhen ZHANG ; Han LU ; Aoxun ZHU ; Cong ZHOU ; Yanran WU ; Sen LI
Journal of Zhejiang University. Science. B 2023;24(3):221-231
Metabolic reprogramming is a common phenomenon in cancer, with aerobic glycolysis being one of its important characteristics. Hypoxia-inducible factor-1α (HIF1Α) is thought to play an important role in aerobic glycolysis. Meanwhile, naringin is a natural flavanone glycoside derived from grapefruits and many other citrus fruits. In this work, we identified glycolytic genes related to HIF1Α by analyzing the colon cancer database. The analysis of extracellular acidification rate and cell function verified the regulatory effects of HIF1Α overexpression on glycolysis, and the proliferation and migration of colon cancer cells. Moreover, naringin was used as an inhibitor of colon cancer cells to illustrate its effect on HIF1Α function. The results showed that the HIF1Α and enolase 2 (ENO2) levels in colon cancer tissues were highly correlated, and their high expression indicated a poor prognosis for colon cancer patients. Mechanistically, HIF1Α directly binds to the DNA promoter region and upregulates the transcription of ENO2; ectopic expression of ENO2 increased aerobic glycolysis in colon cancer cells. Most importantly, we found that the appropriate concentration of naringin inhibited the transcriptional activity of HIF1Α, which in turn decreased aerobic glycolysis in colon cancer cells. Generally, naringin reduces glycolysis in colon cancer cells by reducing the transcriptional activity of HIF1Α and the proliferation and invasion of colon cancer cells. This study helps to elucidate the relationship between colon cancer progression and glucose metabolism, and demonstrates the efficacy of naringin in the treatment of colon cancer.
Glycolysis
;
Colonic Neoplasms/metabolism*
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Phosphopyruvate Hydratase/metabolism*
;
Flavanones/pharmacology*
;
Cell Line, Tumor
;
Databases, Genetic
;
Cell Proliferation/drug effects*
;
Transfection
;
Warburg Effect, Oncologic
3.Long non-coding RNA colon cancer-associated transcript 1-Vimentin axis promoting the migration and invasion of HeLa cells.
Zhangfu LI ; Jiangbei YUAN ; Qingen DA ; Zilong YAN ; Jianhua QU ; Dan LI ; Xu LIU ; Qimin ZHAN ; Jikui LIU
Chinese Medical Journal 2023;136(19):2351-2361
BACKGROUND:
Long non-coding RNA colon cancer-associated transcript 1 (CCAT1) is involved in transforming multiple cancers into malignant cancer types. Previous studies underlining the mechanisms of the functions of CCAT1 primarily focused on its decoy for miRNAs (micro RNAs). However, the regulatory mechanism of CCAT1-protein interaction associated with tumor metastasis is still largely unknown. The present study aimed to identify proteome-wide CCAT1 partners and explored the CCAT1-protein interaction mediated tumor metastasis.
METHODS:
CCAT1-proteins complexes were purified and identified using RNA antisense purification coupled with the mass spectrometry (RAP-MS) method. The database for annotation, visualization, and integrated discovery and database for eukaryotic RNA binding proteins (EuRBPDB) websites were used to bioinformatic analyzing CCAT1 binding proteins. RNA pull-down and RNA immunoprecipitation were used to validate CCAT1-Vimentin interaction. Transwell assay was used to evaluate the migration and invasion abilities of HeLa cells.
RESULTS:
RAP-MS method worked well by culturing cells with nucleoside analog 4-thiouridine, and cross-linking was performed using 365 nm wavelength ultraviolet. There were 631 proteins identified, out of which about 60% were RNA binding proteins recorded by the EuRBPDB database. Vimentin was one of the CCAT1 binding proteins and participated in the tumor metastasis pathway. Knocked down vimetin ( VIM ) and rescued the downregulation by overexpressing CCAT1 demonstrated that CCAT1 could enhance tumor migration and invasion abilities by stabilizing Vimentin protein.
CONCLUSION
CCAT1 may bind with and stabilize Vimentin protein, thus enhancing cancer cell migration and invasion abilities.
Humans
;
HeLa Cells
;
RNA, Long Noncoding/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Vimentin/metabolism*
;
MicroRNAs/metabolism*
;
Colonic Neoplasms/genetics*
;
RNA-Binding Proteins/metabolism*
;
Gene Expression Regulation, Neoplastic/genetics*
;
Cell Movement/genetics*
4.Astragalus polysaccharide inhibits IDO1 expression in colon tumor microenvironment to increase intratumoral CD8~+ T cell infiltration.
Ya-Nan WANG ; Ming-Bin GUI ; Lian-Ping QU ; Min ZOU ; Feng GAO
China Journal of Chinese Materia Medica 2023;48(17):4722-4730
This study aims to investigate the regulatory effects of Astragalus polysaccharide(APS) and APS combined with 5-fluorouracil(5-FU) on indoleamine-2,3-dioxygenase(IDO1) in the colon tumor microenvironment. Sixty Balb/c mice were randomized into a blank group, a model group, an APS group, an APS + 5-FU group, an APS + low-dose 5-FU group, and a 5-FU group. A tumor model was established by subcutaneous transplantation with CT-26 mouse colon cancer cells in other groups except the blank group. After successful modeling, each group was treated with corresponding drugs for 7 days. The general condition, body weight, and tumor volume of the mice were observed and measured daily during the treatment period. The mice were sacrificed at the end of treatment, and the tumor suppression rate and spleen index of the mice were calculated. Western blot and fluorescence quantitative PCR were employed to determine the protein and mRNA levels, respectively, of IDO1 in the tumor tissue of mice. High performance liquid chromatography was employed to measure the levels of tryptophan(Trp) and kynurenine(Kyn) in the tumor tissue of mice. Hematoxylin-eosin(HE) staining was performed to observe the histological changes of the tumor tissue, and immunohistochemistry to detect the changes of CD4 and CD8 expression in the tumor tissue. Compared with that in the model group, the tumor volume of mice in each treatment group significantly reduced. The body weights of mice in APS + 5-FU group and 5-FU group significantly reduced from day 4 to day 7 of treatment. In addition, the APS + 5-FU group and 5-FU group showed significantly decreased spleen index. The protein and mRNA levels of IDO1 were significantly down-regulated in the APS, APS + 5-FU, and APS + low-dose 5-FU groups. The drug interventions significantly increased the Trp content and decreased the Kyn content. The APS + 5-FU group showed significantly reduced infiltration of CD4~+ T lymphocytes and increased infiltration of CD8~+ T lymphocytes. APS inhibited the expression of IDO1 in the colon tumor microenvironment to increase CD8~+ T lymphocyte infiltration, and the combination of APS with 5-FU demonstrated better effect.
Mice
;
Animals
;
Tumor Microenvironment
;
Colonic Neoplasms/genetics*
;
Fluorouracil/pharmacology*
;
Polysaccharides/pharmacology*
;
CD8-Positive T-Lymphocytes/metabolism*
;
RNA, Messenger/metabolism*
5.Tongxie Yaofang regulates tumor-associated macrophage polarization in colorectal cancer under chronic stress.
Yi YANG ; Yan-E HU ; Yu-Qing HUANG ; Yi-Fang JIANG ; Xi FU ; Feng-Ming YOU
China Journal of Chinese Materia Medica 2023;48(22):6142-6153
This study aims to investigate the intervention effect and mechanism of Tongxie Yaofang in regulating tumor-associated macrophage polarization on colorectal cancer under chronic stress. BALB/C mice were randomized into blank, control, model, mifepristone, and low-, medium-, and high-dose Tongxie Yaofang groups. The other groups except the blank and model groups were subjected to chronic restraint stress and subcutaneous implantation of colon cancer cells for the modeling of colon cancer under stress. Du-ring this period, the body mass and tumor size of each group of mice were recorded. The degree of depression in mice was assessed by behavioral changes. Enzyme-linked immunosorbent assay was employed to determine the levels of cortisol(CORT), 5-hydroxytryptamine(5-HT), norepinephrine(NE), M1-associated inflammatory cytokines [interleukin(IL)-1β, IL-12, and tumor necrosis factor(TNF)-α], and M2-associated inflammatory cytokines(IL-4 and IL-10) in the serum. The tumor growth of mice in each group was regularly monitored by in vivo imaging. The histopathological changes of tumors in each group of mice were observed by hematoxylin-eosin staining. The proportions of CD86 and CD206 in the tumor tissue were detected by flow cytometry and immunofluorescence staining. Western blot was employed to determine the protein levels of Janus kinase(JAK)1, JAK2, JAK3, signal transducer and activator of transcription(STAT)3, and STAT6 in the tumor tissue. The results showed that chronic stress increased the immobility time of mice, elevated the serum levels of CORT, IL-4, and IL-10, lowered the levels of 5-HT, NE, IL-1β, IL-12, and TNF-α, and promoted the growth of subcutaneous tumors. The tumor cells in the tumor tissue grew actively, with obvious atypia and up-regulated protein levels of CD206, JAK1, JAK2, JAK3, STAT3, and STAT6, and down-regulated protein level of CD86. The treatment with Tongxie Yaofang shortened the immobility time of mice, lowered the serum levels of CORT, IL-4, and IL-10, elevated the serum levels of 5-HT, NE, IL-1β, IL-12, and TNF-α, and inhibited the growth of subcutaneous tumors in mice. Moreover, the treatment caused different degrees of necrosis in the tumor tissues, down-regulated the protein levels of CD206, JAK1, JAK2, JAK3, STAT3, and STAT6, and up-regulated the protein level of CD86. In summary, Tongxie Yaofang can promote the transformation of M2 macrophages to M1 macrophages and change the tumor microenvironment under chronic stress to inhibit the development of colorectal cancer, which may be related to the JAK/STAT signaling pathway.
Mice
;
Animals
;
Interleukin-10
;
Tumor-Associated Macrophages/metabolism*
;
Tumor Necrosis Factor-alpha
;
Interleukin-4
;
Serotonin
;
Mice, Inbred BALB C
;
Cytokines/metabolism*
;
Interleukin-12
;
Colonic Neoplasms
;
Colorectal Neoplasms
;
Tumor Microenvironment
6.NKD1 promotes glucose uptake in colon cancer cells by activating YWHAE transcription.
Qian LIU ; Yuyang DAI ; Huayi YU ; Ying SHEN ; Jianzhong DENG ; Wenbin LU ; Jianhua JIN
Journal of Southern Medical University 2023;43(4):585-589
OBJECTIVE:
Bo investigate the regulatory relationship between NKD1 and YWHAE and the mechanism of NKD1 for promoting tumor cell proliferation.
METHODS:
HCT116 cells transfected with pcDNA3.0-NKD1 plasmid, SW620 cells transfected with NKD1 siRNA, HCT116 cells with stable NKD1 overexpression (HCT116-NKD1 cells), SW620 cells with nkd1knockout (SW620-nkd1-/- cells), and SW620-nkd1-/- cells transfected with pcDNA3.0-YWHAE plasmid were examined for changes in mRNA and protein expression levels of YWHAE using qRT-PCR and Western blotting. Chromatin immunoprecipitation (ChIP) assay was used to detect the binding of NKD1 to the promoter region of YWHAE gene. The regulatory effect of NKD1 on YWHAE gene promoter activity was analyzed by dual-luciferase reporter gene assay, and the interaction between NKD1 and YWHAE was analyzed with immunofluorescence assay. The regulatory effect of NKD1 on glucose uptake was examined in the tumor cells.
RESULTS:
In HCT116 cells, overexpression of NKD1 significantly enhanced the expression of YWHAE at both the mRNA and protein levels, while NKD1 knockout decreased its expression in SW620 cells (P < 0.001). ChIP assay showed that NKD1 protein was capable of binding to the YWHAE promoter sequence; dual luciferase reporter gene assay showed that NKD1 overexpression (or knockdown) in the colon cancer cells significantly enhanced (or reduced) the transcriptional activity of YWHAE promoter (P < 0.05). Immunofluorescence assay demonstrated the binding of NKD1 and YWHAE proteins in colon cancer cells. NKD1 knockout significantly reduced glucose uptake in colon cancer cells (P < 0.01), while YWHAE overexpression restored the glucose uptake in NKD1-knockout cells (P < 0.05).
CONCLUSION
NKD1 protein activates the transcriptional activity of YWHAE gene to promote glucose uptake in colon cancer cells.
Humans
;
Colonic Neoplasms
;
HCT116 Cells
;
Cell Line, Tumor
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
RNA, Messenger
;
Glucose
;
Calcium-Binding Proteins/metabolism*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
14-3-3 Proteins/metabolism*
7.Chang Wei Qing Decoction enhances the anti-tumor effect of PD-1 inhibitor therapy by regulating the immune microenvironment and gut microbiota in colorectal cancer.
Ting WANG ; Linguangjin WU ; Shuyun WANG ; Xiaolan SHI ; Hui LIU ; Wanli DENG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(5):333-345
The anti-tumor effect of anti-PD-1 antibody has long been shown to be strongly related to the tumor immune microenvironment (TIME). This study aimed to mechanistically assess whether Chang Wei Qing (CWQ) Decoction can enhance the anti-tumor effect of PD-1 inhibitor therapy. PD-1 inhibitor therapy showed the significant anti-tumor effect in patients with mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) colorectal cancer (CRC), rather than those with mismatch repair-proficient/microsatellite stable (pMMR/MSS) CRC. Hence, immunofluorescence double-label staining was utilized to explore the difference in the TIME between dMMR/MSI-H and pMMR/MSS CRC patients. Flow cytometry was used to analyze T-lymphocytes in tumors from mice. Western blot was used to measure the expression of PD-L1 protein in mouse tumors. The intestinal mucosal barrier of mice was evaluated by hematoxylin-eosin staining and immunohistochemistry. 16S rRNA-gene sequencing was used to examine the structure of the gut microbiota in mice. Subsequently, Spearmanapos;s correlation analysis was used to analyze the relationship between the gut microbiota and tumor-infiltrating T-lymphocytes. The results showed that dMMR/MSI-H CRC patients had more CD8+T cells and higher expression of PD-1 and PD-L1 proteins. In vivo, CWQ enhanced the anti-tumor effect of anti-PD-1 antibody and increased the infiltration of CD8+ and PD-1+CD8+ T cells in tumors. Additionally, the combination of CWQ with anti-PD-1 antibody resulted in lower inflammation in the intestinal mucosa than that induced by anti-PD-1 antibody alone. CWQ and anti-PD-1 antibody co-treatment upregulated PD-L1 protein and reduced the abundance of Bacteroides in the gut microbiota but increased the abundance of Akkermansia,Firmicutes, andActinobacteria. Additionally, the proportion of infiltrated CD8+PD-1+, CD8+, and CD3+ T cells were found to be positively correlated with the abundance of Akkermansia. Accordingly, CWQ may modulate the TIME by modifying the gut microbiota and consequently enhance the anti-tumor effect of PD-1 inhibitor therapy.
Animals
;
Mice
;
Immune Checkpoint Inhibitors/therapeutic use*
;
Gastrointestinal Microbiome
;
CD8-Positive T-Lymphocytes
;
B7-H1 Antigen
;
RNA, Ribosomal, 16S
;
Colorectal Neoplasms/metabolism*
;
Colonic Neoplasms
;
Tumor Microenvironment
8.Correlation of NTRK genetic fusions with mismatch repair protein deletion in patients with colorectal cancer.
Xiao Hong PU ; Fu Ping GAO ; Hong Yan WU ; Yao FU ; Xiang Shan FAN
Chinese Journal of Pathology 2022;51(2):103-107
Objective: To investigate the relationship between the expression of four mismatch repair proteins (MLH1, MSH2, MSH6 and PMS2) and NTRK genetic fusions in colorectal cancer. Methods: The paraffin-embedded tissue blocks of 830 cases of colorectal cancer were collected at the Affiliated Drum Tower Hospital, Nanjing University Medical School, China, from 2015 to 2019. Immunohistochemical and fluorescence in situ hybridization(FISH) method were used respectively to detect the expression of mismatch repair proteins and the break-apart of NTRKs; and the relationship between the expression of mismatch repair proteins and the NTRK genetic fusions was analyzed. Results: The overall mismatch repair protein deficiency (dMMR) rate was 9.88% (82/830), the mismatch repair proteins proficiency (pMMR) rate was 90.12%(748/830). The total deficiency rate of MLH1 protein was 9.04% (75/830), hPMS2 protein deficiency rate was 9.04% (75/830), MSH2 protein deficiency rate was 2.53% (21/830), MSH6 protein deficiency rate was 4.10% (34/830), the deficiency rate of synchronous MLH1 and PMS2 were 8.67% (72/830) and the deficiency rate of synchronous MSH2 and MSH6 were 2.17% (18/830). The dMMR group was associated with tumor location, different histological subgroups, tumor differentiation, AJCC stage and N stage (P<0.05). There were six cases (7.32%) carrying NTRK fusion by FISH among the 82 cases of dMMR, but only seven cases (0.94%) carrying NTRK fusion among the 748 cases of PMMR. The NTRKs translocation by FISH in all 13 cases were further confirmed by next generation sequencing. Among the clinicopathological characteristics, only differentiation showed significant difference between NTRK fusion positive and negative groups (P<0.05). More importantly, NTRK fusion was enriched in dMMR group (7.32% vs. 0.94%). Conclusion: In dMMR colorectal cancer group, the prevalence of NTRK fusion is higher than that in pMMR group.
Colonic Neoplasms
;
Colorectal Neoplasms/genetics*
;
DNA Mismatch Repair/genetics*
;
Humans
;
In Situ Hybridization, Fluorescence
;
Mismatch Repair Endonuclease PMS2/metabolism*
;
MutL Protein Homolog 1/metabolism*
;
MutS Homolog 2 Protein/metabolism*
9.m7G-lncRNAs are potential biomarkers for prognosis and tumor microenvironment in patients with colon cancer.
Shu Ran CHEN ; Rui DONG ; Yan LI ; Hua Zhang WU ; Mu Lin LIU
Journal of Southern Medical University 2022;42(5):681-689
OBJECTIVE:
To assess the value of m7G-lncRNAs in predicting the prognosis and microenvironment of colorectal cancer (CRC).
METHODS:
We screened m7G-lncRNAs from TCGA to construct an m7G-lncRNAs risk model using multivariate Cox analysis, which was validated using ROC and C-index curves. Calibration and nomogram were used to predict the prognosis of CRC patients. Point-bar charts and K-M survival curves were used to assess the correlation of risk scores with the patients' clinical staging and prognosis. CIBERSORT and ESTIMATE were used to explore the association between the tumor microenvironment and immune cell infiltration in patients in high and low risk groups and the correlation of risk scores with microsatellite instability, stem cell index and immune checkpoint expression. A protein-protein interaction network was constructed, and the key targets regulated by m7G-lncRNAs were identified and validated in paired samples of CRC and adjacent tissues by immunoblotting.
RESULTS:
We identified a total of 1722 m7G-lncRNAs from TCGA database, from which 12 lncRNAs were screened to construct the risk model. The AUCs of the risk model for predicting survival outcomes at 1, 3 and 5 years were 0.727, 0.747 and 0.794, respectively. The AUC of the nomogram for predicting prognosis was 0.794, and the predicted results were consistent with actual survival outcomes of the patients. The patients in the high-risk group showed more advanced tumor stages and a greater likelihood of high microsatellite instability than those in the low-risk group (P < 0.05). The tumor stemness index was negatively correlated with the risk score (r=-0.19; P=7.3e-05). Patients in the high-risk group had higher stromal cell scores (P=0.0028) and higher total scores (P=0.007) with lowered expressions of activated mast cells (r=-0.11; P=0.045) and resting CD4+ T cells (r=-0.14; P=0.01) and increased expressions of most immune checkpoints (P < 0.05). ATXN2 (P= 0.006) and G3BP1 (P=0.007) were identified as the key targets regulated by m7G-lncRNAs, and their expressions were both higher in CRC than in adjacent tissues.
CONCLUSION
The risk model based on 12 m7G-lncRNAs has important prognostic value for CRC and can reflect the microenvironment and the efficacy of immunotherapy in the patients.
Biomarkers, Tumor/metabolism*
;
Colonic Neoplasms
;
DNA Helicases/metabolism*
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Microsatellite Instability
;
Poly-ADP-Ribose Binding Proteins/metabolism*
;
Prognosis
;
RNA Helicases/metabolism*
;
RNA Recognition Motif Proteins/metabolism*
;
RNA, Long Noncoding/metabolism*
;
Tumor Microenvironment
10.ZNF750 facilitates carcinogenesis via promoting the expression of long non-coding RNA CYTOR and influences pharmacotherapy response in colon adenocarcinoma.
Lu XIA ; Hexin LIN ; Yanming ZHOU ; Jiabian LIAN
Journal of Zhejiang University. Science. B 2022;23(7):587-596
The epidermal cell differentiation regulator zinc finger protein 750 (ZNF750) is a transcription factor containing the Cys2His2 (C2H2) domain, the zinc finger structure of which is located at the N-terminal 25-46 amino acids of ZNF750. It can promote the expression of differentiation-related factors while inhibiting the expression of progenitor cell-related genes. ZNF750 is directly regulated by p63 (encoded by the TP63 gene, belonging to the TP53 superfamily). The Krüppel-like factor 4 (KLF4), repressor element-1 (RE-1)-silencing transcription factor (REST) corepressor 1 (RCOR1), lysine demethylase 1A (KDM1A), and C-terminal-binding protein 1/2 (CTBP1/2) chromatin regulators cooperate with ZNF750 to repress epidermal progenitor genes and activate the expression of epidermal terminal differentiation genes (Sen et al., 2012; Boxer et al., 2014). Besides, ZNF750 and the regulatory network composed of bone morphogenetic protein (BMP) signaling pathway, long non-coding RNAs (lncRNAs) (anti-differentiation non-coding RNA (ANCR) and tissue differentiation-inducing non-protein coding RNA (TINCR)), musculoaponeurotic fibrosarcoma oncogene (MAF)/MAF family B (MAFB), grainy head-like 3 (GRHL3), and positive regulatory domain zinc finger protein 1 (PRDM1) jointly promote epidermal cell differentiation (Sen et al., 2012).
Adenocarcinoma/metabolism*
;
Carcinogenesis/genetics*
;
Colonic Neoplasms/metabolism*
;
Histone Demethylases/metabolism*
;
Humans
;
RNA, Long Noncoding/genetics*
;
Transcription Factors/metabolism*
;
Tumor Suppressor Proteins/metabolism*

Result Analysis
Print
Save
E-mail