1.Anemoside B4 regulates fatty acid metabolism reprogramming in mice with colitis-associated cancer.
Xin YANG ; Jing JIA ; Xin-Xu XIE ; Meng-Qiang WAN ; Yu-Lin FENG ; Ying-Ying LUO ; Hui OUYANG ; Jun YU
China Journal of Chinese Materia Medica 2023;48(9):2325-2333
The study aimed to investigate the effect of anemoside B4(B4) on fatty acid metabolism in mice with colitis-associated cancer(CAC). The CAC model was established by azoxymethane(AOM)/dextran sodium sulfate(DSS) in mice. Mice were randomly divided into a normal group, a model group, and low-, medium-, and high-dose anemoside B4 groups. After the experiment, the length of the mouse colon and the size of the tumor were measured, and the pathological alterations in the mouse colon were observed using hematoxylin-eosin(HE) staining. The slices of the colon tumor were obtained for spatial metabolome analysis to analyze the distribution of fatty acid metabolism-related substances in the tumor. The mRNA levels of SREBP-1, FAS, ACCα, SCD-1, PPARα, ACOX, UCP-2, and CPT-1 were determined by real-time quantitative PCR(RT-qPCR). The results revealed that the model group showed decreased body weight(P<0.05) and colon length(P<0.001), increased number of tumors, and increased pathological score(P<0.01). Spatial metabolome analysis revealed that the content of fatty acids and their derivatives, carnitine, and phospholipid in the colon tumor was increased. RT-qPCR results indicated that fatty acid de novo synthesis and β-oxidation-related genes, such as SREBP-1, FASN, ACCα, SCD-1, ACOX, UCP-2, and CPT-1 mRNA expression levels increased considerably(P<0.05, P<0.001). After anemoside B4 administration, the colon length increased(P<0.01), and the number of tumors decreased in the high-dose anemoside B4 group(P<0.05). Additionally, spatial metabolome analysis showed that anemoside B4 could decrease the content of fatty acids and their derivatives, carnitine, and phospholipids in colon tumors. Meanwhile, anemoside B4 could also down-regulate the expression of FASN, ACCα, SCD-1, PPARα, ACOX, UCP-2, and CPT-1 in the colon(P<0.05, P<0.01, P<0.001). The findings of this study show that anemoside B4 may inhibit CAC via regulating fatty acid metabolism reprogramming.
Mice
;
Animals
;
Sterol Regulatory Element Binding Protein 1
;
Colitis-Associated Neoplasms
;
PPAR alpha/genetics*
;
Colonic Neoplasms/genetics*
;
Colon
;
Azoxymethane
;
RNA, Messenger
;
Dextran Sulfate
;
Colitis/drug therapy*
;
Mice, Inbred C57BL
;
Disease Models, Animal
2.Silenced ANP32A inhibits the growth, invasion and migration of colorectal cancer in vitro via the inactivation of AKT pathway.
Hong Fang DING ; Xiao Juan LI ; Lu Wei ZHOU ; Zhi CUI ; Hai De MENG ; Juan WANG
Journal of Southern Medical University 2023;43(1):52-59
OBJECTIVE:
To investigate the effect of ANP32A silencing on invasion and migration of colon cancer cells and the influence of the activity of AKT signaling pathway on this effect.
METHODS:
Colorectal cancer HCT116 and SW480 were transfected with a small interfering RNA targeting ANP32A via a lentiviral vector. At 24, 48 and 72 h after the transfection, the changes in cell proliferation and AKT activity in the cells were detected using MTT assay and Western blotting, respectively. HCT116 and SW480 cells were treated with the AKT agonist SC79 or its inhibitor MK2206 for 24, 48, 72 and 96 h, and the changes in cell migration and invasion ability were analyzed using Transwell chamber assay and cell proliferation was assessed using MTT assay. The effects of SC79 and MK2206 on migration and invasion abilities of HCT116 and SW480 cells with or without ANP32A silencing were examined using wound healing and Transwell chamber assays, and the changes in the expression of metadherin (MTDH), a factor associated with cells invasion and migration, was detected with Western blotting.
RESULTS:
Lentivirus-mediated ANP32A silencing significantly down-regulated the activity of AKT and inhibited the proliferation of both HCT116 and SW480 cells (P < 0.01). The application of AKT inhibitor MK2206 obviously inhibited the proliferation, invasion and migration of the colorectal cancer cells (P < 0.05), while the AKT agonist SC79 significantly promoted the invasion and migration of the cells (P < 0.01). In HCT116 and SW480 cells with ANP32A silencing, treatment with MK2206 strongly enhanced the inhibitory effects of ANP32A silencing on cell invasion and migration (P < 0.05) and the expression of MTDH, while SC79 partially reversed these inhibitory effects (P < 0.01).
CONCLUSION
ANP32A silencing inhibits invasion and migration of colorectal cancer cells possibly by inhibiting the activation of the AKT signaling pathway.
Humans
;
Proto-Oncogene Proteins c-akt
;
Cell Proliferation
;
Blotting, Western
;
Cell Movement
;
Colonic Neoplasms
;
Membrane Proteins
;
RNA-Binding Proteins/genetics*
;
Nuclear Proteins
3.Long non-coding RNA colon cancer-associated transcript 1-Vimentin axis promoting the migration and invasion of HeLa cells.
Zhangfu LI ; Jiangbei YUAN ; Qingen DA ; Zilong YAN ; Jianhua QU ; Dan LI ; Xu LIU ; Qimin ZHAN ; Jikui LIU
Chinese Medical Journal 2023;136(19):2351-2361
BACKGROUND:
Long non-coding RNA colon cancer-associated transcript 1 (CCAT1) is involved in transforming multiple cancers into malignant cancer types. Previous studies underlining the mechanisms of the functions of CCAT1 primarily focused on its decoy for miRNAs (micro RNAs). However, the regulatory mechanism of CCAT1-protein interaction associated with tumor metastasis is still largely unknown. The present study aimed to identify proteome-wide CCAT1 partners and explored the CCAT1-protein interaction mediated tumor metastasis.
METHODS:
CCAT1-proteins complexes were purified and identified using RNA antisense purification coupled with the mass spectrometry (RAP-MS) method. The database for annotation, visualization, and integrated discovery and database for eukaryotic RNA binding proteins (EuRBPDB) websites were used to bioinformatic analyzing CCAT1 binding proteins. RNA pull-down and RNA immunoprecipitation were used to validate CCAT1-Vimentin interaction. Transwell assay was used to evaluate the migration and invasion abilities of HeLa cells.
RESULTS:
RAP-MS method worked well by culturing cells with nucleoside analog 4-thiouridine, and cross-linking was performed using 365 nm wavelength ultraviolet. There were 631 proteins identified, out of which about 60% were RNA binding proteins recorded by the EuRBPDB database. Vimentin was one of the CCAT1 binding proteins and participated in the tumor metastasis pathway. Knocked down vimetin ( VIM ) and rescued the downregulation by overexpressing CCAT1 demonstrated that CCAT1 could enhance tumor migration and invasion abilities by stabilizing Vimentin protein.
CONCLUSION
CCAT1 may bind with and stabilize Vimentin protein, thus enhancing cancer cell migration and invasion abilities.
Humans
;
HeLa Cells
;
RNA, Long Noncoding/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Vimentin/metabolism*
;
MicroRNAs/metabolism*
;
Colonic Neoplasms/genetics*
;
RNA-Binding Proteins/metabolism*
;
Gene Expression Regulation, Neoplastic/genetics*
;
Cell Movement/genetics*
4.Astragalus polysaccharide inhibits IDO1 expression in colon tumor microenvironment to increase intratumoral CD8~+ T cell infiltration.
Ya-Nan WANG ; Ming-Bin GUI ; Lian-Ping QU ; Min ZOU ; Feng GAO
China Journal of Chinese Materia Medica 2023;48(17):4722-4730
This study aims to investigate the regulatory effects of Astragalus polysaccharide(APS) and APS combined with 5-fluorouracil(5-FU) on indoleamine-2,3-dioxygenase(IDO1) in the colon tumor microenvironment. Sixty Balb/c mice were randomized into a blank group, a model group, an APS group, an APS + 5-FU group, an APS + low-dose 5-FU group, and a 5-FU group. A tumor model was established by subcutaneous transplantation with CT-26 mouse colon cancer cells in other groups except the blank group. After successful modeling, each group was treated with corresponding drugs for 7 days. The general condition, body weight, and tumor volume of the mice were observed and measured daily during the treatment period. The mice were sacrificed at the end of treatment, and the tumor suppression rate and spleen index of the mice were calculated. Western blot and fluorescence quantitative PCR were employed to determine the protein and mRNA levels, respectively, of IDO1 in the tumor tissue of mice. High performance liquid chromatography was employed to measure the levels of tryptophan(Trp) and kynurenine(Kyn) in the tumor tissue of mice. Hematoxylin-eosin(HE) staining was performed to observe the histological changes of the tumor tissue, and immunohistochemistry to detect the changes of CD4 and CD8 expression in the tumor tissue. Compared with that in the model group, the tumor volume of mice in each treatment group significantly reduced. The body weights of mice in APS + 5-FU group and 5-FU group significantly reduced from day 4 to day 7 of treatment. In addition, the APS + 5-FU group and 5-FU group showed significantly decreased spleen index. The protein and mRNA levels of IDO1 were significantly down-regulated in the APS, APS + 5-FU, and APS + low-dose 5-FU groups. The drug interventions significantly increased the Trp content and decreased the Kyn content. The APS + 5-FU group showed significantly reduced infiltration of CD4~+ T lymphocytes and increased infiltration of CD8~+ T lymphocytes. APS inhibited the expression of IDO1 in the colon tumor microenvironment to increase CD8~+ T lymphocyte infiltration, and the combination of APS with 5-FU demonstrated better effect.
Mice
;
Animals
;
Tumor Microenvironment
;
Colonic Neoplasms/genetics*
;
Fluorouracil/pharmacology*
;
Polysaccharides/pharmacology*
;
CD8-Positive T-Lymphocytes/metabolism*
;
RNA, Messenger/metabolism*
5.Identification of immune-related prognostic signature for colon adenocarcinoma based on weighted gene co-expression network analysis.
Xiang HE ; Shouwei WAN ; Qiang HE ; Jixue HOU
Chinese Journal of Cellular and Molecular Immunology 2023;39(6):509-515
Objective To identify immune-related molecular markers in an attempt to predict prognosis of colon adenocarcinoma (COAD). Methods Immune related genes (IREGs) was analyzed based on the TCGA database. Weighted gene co-expression network analysis (WGCNA) and Cox regression analysis were used to establish risk models. According to the median risk score, COAD patients were divided into high risk and low risk groups. The prognostic difference were compared between the two groups. The function of the model was validated using GEO. Results A total of 1015 IREGs was obtained. The established model consisted of three genes: RAR related orphan receptor C (RORC), leucine-rich repeat Fli-I-interacting protein 2 (LRRFIP2) and lectin galactoside-binding soluble galectin 4 (LGALS4). The high-risk group had significantly poorer prognosis than low-risk group in the GEO database, and it was validated using a GEO database. Further analysis via univariate and multivariate Cox regression analyses revealed that risk model could function as independent prognostic factor for COAD patients. Conclusion The risk model based on IREGs can predict the prognosis of patients with COAD.
Humans
;
Prognosis
;
Adenocarcinoma/genetics*
;
Colonic Neoplasms/genetics*
;
Gene Expression Profiling
;
Lectins
6.Progress in pulmonary enteric adenocarcinoma.
Ying ZUO ; Hua BAI ; Jian Ming YING ; Jie WANG
Chinese Journal of Oncology 2022;44(4):321-325
Pulmonary enteric adenocarcinoma (PEAC), as a rare histologic subtype of primary lung adenocarcinoma, is defined as an adenocarcinoma in which the enteric component exceeds 50%. It is named after its shared morphological and immunohistochemical features with colorectal cancer. While with such similarity, the differential diagnosis of PEAC and lung metastatic colorectal cancer is a great challenge in the clinic. PEAC may originate from the intestinal metaplasia of respiratory basal cells stimulated by risk factors such as smoking. Current studies have found that KRAS is a relatively high-frequency mutation gene, and other driver gene mutations are rare. In terms of immunohistochemistry, in pulmonary enteric adenocarcinoma, the positive rate was 88.2% (149/169) for CK7, 78.1% (132/169) for CDX2, 48.2% (82/170) for CK20 and 38.8% (66/170) for TTF1. As for clinical features, the average age of onset for pulmonary enteric adenocarcinoma was 62 years, male patients accounted for 56.5% (35/62), smokers accounted for 78.8% (41/52), and 41.4% (24/58) of the primary lesion was located in the upper lobe of the right lung. In terms of treatment, conventional non-small cell lung cancer (NSCLC) regimens rather than colorectal cancer regimens are now recommended. There is still an urgent need for more basic and clinical research, in-depth exploration of its molecular feature and pathogenesis from the level of omics and other aspects, to help diagnosis and differential diagnosis, and find the optimal chemotherapy regimen, possibly effective targeted therapy and even immunotherapy.
Adenocarcinoma/pathology*
;
Adenocarcinoma of Lung/pathology*
;
Biomarkers, Tumor
;
Carcinoma, Non-Small-Cell Lung/diagnosis*
;
Colonic Neoplasms/pathology*
;
Diagnosis, Differential
;
Humans
;
Lung Neoplasms/genetics*
;
Male
;
Middle Aged
7.Correlation of NTRK genetic fusions with mismatch repair protein deletion in patients with colorectal cancer.
Xiao Hong PU ; Fu Ping GAO ; Hong Yan WU ; Yao FU ; Xiang Shan FAN
Chinese Journal of Pathology 2022;51(2):103-107
Objective: To investigate the relationship between the expression of four mismatch repair proteins (MLH1, MSH2, MSH6 and PMS2) and NTRK genetic fusions in colorectal cancer. Methods: The paraffin-embedded tissue blocks of 830 cases of colorectal cancer were collected at the Affiliated Drum Tower Hospital, Nanjing University Medical School, China, from 2015 to 2019. Immunohistochemical and fluorescence in situ hybridization(FISH) method were used respectively to detect the expression of mismatch repair proteins and the break-apart of NTRKs; and the relationship between the expression of mismatch repair proteins and the NTRK genetic fusions was analyzed. Results: The overall mismatch repair protein deficiency (dMMR) rate was 9.88% (82/830), the mismatch repair proteins proficiency (pMMR) rate was 90.12%(748/830). The total deficiency rate of MLH1 protein was 9.04% (75/830), hPMS2 protein deficiency rate was 9.04% (75/830), MSH2 protein deficiency rate was 2.53% (21/830), MSH6 protein deficiency rate was 4.10% (34/830), the deficiency rate of synchronous MLH1 and PMS2 were 8.67% (72/830) and the deficiency rate of synchronous MSH2 and MSH6 were 2.17% (18/830). The dMMR group was associated with tumor location, different histological subgroups, tumor differentiation, AJCC stage and N stage (P<0.05). There were six cases (7.32%) carrying NTRK fusion by FISH among the 82 cases of dMMR, but only seven cases (0.94%) carrying NTRK fusion among the 748 cases of PMMR. The NTRKs translocation by FISH in all 13 cases were further confirmed by next generation sequencing. Among the clinicopathological characteristics, only differentiation showed significant difference between NTRK fusion positive and negative groups (P<0.05). More importantly, NTRK fusion was enriched in dMMR group (7.32% vs. 0.94%). Conclusion: In dMMR colorectal cancer group, the prevalence of NTRK fusion is higher than that in pMMR group.
Colonic Neoplasms
;
Colorectal Neoplasms/genetics*
;
DNA Mismatch Repair/genetics*
;
Humans
;
In Situ Hybridization, Fluorescence
;
Mismatch Repair Endonuclease PMS2/metabolism*
;
MutL Protein Homolog 1/metabolism*
;
MutS Homolog 2 Protein/metabolism*
8.Value of albumin RNAscope in situ hybridization in diagnosis and differential diagnosis of hepatocellular carcinoma.
Xiao Yan CHEN ; Lei DONG ; Chao Fu WANG
Chinese Journal of Pathology 2022;51(5):400-406
Objective: To investigate the utility of albumin RNAscope in situ hybridization in the diagnosis and differential diagnosis of hepatocellular carcinoma and its mimics. Methods: One hundred and fifty-two cases of hepatocellular carcinoma and its mimics and 33 cases of normal tissue were selected from the pathology database of the Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine from January 2013 to December 2019. Tissue microarrays were constructed and RNAscope in situ hybridization was performed to detect the expression of albumin mRNA. Results: No albumin mRNA expression was detected in normal tissues except for the liver. All hepatocellular carcinoma regardless of its degree of differentiation and primary or metastatic nature had detectable albumin mRNA, with strong and diffuse staining in 90.7% (49/54) of cases. While the positive rate of HepPar-1, Arg-1 or one of them by immunohistochemistry was 87.0% (47/54), 85.2% (46/54) and 92.6% (50/54) respectively. The positive rates of albumin mRNA in intrahepatic cholangiocarcinoma and biphenotypic hepatocellular carcinoma were 7/15 and 9/10, respectively. The former showed focal or heterogeneous staining, while the latter showed strong and diffuse staining. The positive rate of hepatoid adenocarcinoma was 8/19, and the albumin expression could be diffuse or focal. Sporadic cases of poorly differentiated gastric adenocarcinoma and metastatic colon adenocarcinoma showed focal staining of albumin mRNA. Conclusions: Detection of albumin mRNA by RNAscope in situ hybridization is of great value for the diagnosis and differential diagnosis of HCC, and the sensitivity may be improved by combining with HepPar-1 and Arg-1. It also offers different diagnostic clues according to different expression patterns.
Adenocarcinoma/diagnosis*
;
Albumins/genetics*
;
Bile Duct Neoplasms/pathology*
;
Bile Ducts, Intrahepatic/pathology*
;
Biomarkers, Tumor/genetics*
;
Carcinoma, Hepatocellular/genetics*
;
China
;
Colonic Neoplasms
;
Diagnosis, Differential
;
Humans
;
In Situ Hybridization
;
Liver Neoplasms/pathology*
;
RNA, Messenger
9.ZNF750 facilitates carcinogenesis via promoting the expression of long non-coding RNA CYTOR and influences pharmacotherapy response in colon adenocarcinoma.
Lu XIA ; Hexin LIN ; Yanming ZHOU ; Jiabian LIAN
Journal of Zhejiang University. Science. B 2022;23(7):587-596
The epidermal cell differentiation regulator zinc finger protein 750 (ZNF750) is a transcription factor containing the Cys2His2 (C2H2) domain, the zinc finger structure of which is located at the N-terminal 25-46 amino acids of ZNF750. It can promote the expression of differentiation-related factors while inhibiting the expression of progenitor cell-related genes. ZNF750 is directly regulated by p63 (encoded by the TP63 gene, belonging to the TP53 superfamily). The Krüppel-like factor 4 (KLF4), repressor element-1 (RE-1)-silencing transcription factor (REST) corepressor 1 (RCOR1), lysine demethylase 1A (KDM1A), and C-terminal-binding protein 1/2 (CTBP1/2) chromatin regulators cooperate with ZNF750 to repress epidermal progenitor genes and activate the expression of epidermal terminal differentiation genes (Sen et al., 2012; Boxer et al., 2014). Besides, ZNF750 and the regulatory network composed of bone morphogenetic protein (BMP) signaling pathway, long non-coding RNAs (lncRNAs) (anti-differentiation non-coding RNA (ANCR) and tissue differentiation-inducing non-protein coding RNA (TINCR)), musculoaponeurotic fibrosarcoma oncogene (MAF)/MAF family B (MAFB), grainy head-like 3 (GRHL3), and positive regulatory domain zinc finger protein 1 (PRDM1) jointly promote epidermal cell differentiation (Sen et al., 2012).
Adenocarcinoma/metabolism*
;
Carcinogenesis/genetics*
;
Colonic Neoplasms/metabolism*
;
Histone Demethylases/metabolism*
;
Humans
;
RNA, Long Noncoding/genetics*
;
Transcription Factors/metabolism*
;
Tumor Suppressor Proteins/metabolism*

Result Analysis
Print
Save
E-mail