1.The Effect of Urocortin 1 on Motility in Isolated, Vascularly Perfused Rat Colon.
Il Young YOU ; Seungho LEE ; Ki Bae KIM ; Hee Seung LEE ; Jong Soon JANG ; Myeongho YEON ; Joung Ho HAN ; Soon Man YOON ; Hee Bok CHAE ; Seon Mee PARK ; Sei Jin YOUN
The Korean Journal of Gastroenterology 2015;65(5):283-290
BACKGROUND/AIMS: Urocortin 1, a corticotropin-releasing factor related peptide, increases colonic motility under stressful conditions. We investigated the effect of urocortin 1 on colonic motility using an experimental model with isolated rat colon in which the blood flow and intestinal nerves were preserved. Furthermore, we assessed whether this effect was mediated by adrenergic or cholinergic nerves. METHODS: Colonic motility was measured in the proximal and distal parts of resected rat colon. The colon resected from the peritoneum was stabilized, and then urocortin 1 (13.8, 138, 277, and 1,388 pM) was administered via a blood vessel. Motility index was measured in the last 5 min of the 15 min administration of urocortin 1 and expressed as percentage change from baseline. Subsequently, the change in motility was measured by perfusing urocortin 1 in colons pretreated with phentolamine, propranolol, hexamethonium, atropine, or tetrodotoxin. RESULTS: At concentrations of 13.8, 138, 277, and 1,388 pM, urocortin 1 increased the motility of proximal colon (20.4+/-7.2%, 48.4+/-20.9%, 67.0+/-25.8%, and 64.2+/-20.9%, respectively) and the motility of distal colon (3.3+/-3.3%, 7.8+/-7.8%, 71.1+/-28.6%, and 87.4+/-32.5%, respectively). The motility induced by urocortin 1 was significantly decreased by atropine to 2.4+/-2.4% in proximal colon and 3.4+/-3.4% in distal colon (p<0.05). However, tetrodotoxin, propranolol, phentolamine, and hexamethonium did not inhibit motility. CONCLUSIONS: Urocortin 1 increased colonic motility and it is considered that this effect was directly mediated by local muscarinic cholinergic receptors.
Animals
;
Colon/*drug effects/physiology
;
Injections, Intravenous
;
Male
;
Muscle Contraction/drug effects
;
Neurotransmitter Agents/pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Cholinergic/chemistry/metabolism
;
Urocortins/isolation & purification/*pharmacology
2.Polymethoxylated flavonoids activate cystic fibrosis transmembrane conductance regulator chloride channel.
Huan-Huan CAO ; Fang FANG ; Bo YU ; Jian LUAN ; Yu JIANG ; Hong YANG
Acta Physiologica Sinica 2015;67(2):225-234
Cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent chloride channel, plays key roles in fluid secretion in serous epithelial cells. Previously, we identified two polymethoxylated flavonoids, 3',4',5,5',6,7-hexamethoxyflavone (HMF) and 5-hydroxy-6,7,3',4'-tetramethoxyflavone (HTF) which could potentiate CFTR chloride channel activities. The present study was aimed to investigate the potentiation effects of HMF and HTF on CFTR Cl(-) channel activities by using a cell-based fluorescence assay and the short circuit Ussing chamber assay. The results of cell-based fluorescence assay showed that both HMF and HTF could dose-dependently potentiate CFTR Cl(-) channel activities in rapid and reversible ways, and the activations could be reversed by the CFTR blocker CFTRinh-172. Notably, HMF showed the highest affinity (EC50 = 2 μmol/L) to CFTR protein among the flavonoid CFTR activators identified so far. The activation of CFTR by HMF or HTF was forskolin (FSK) dependent. Both compounds showed additive effect with FSK and 3-Isobutyl-1-methylx (IBMX) in the activation of CFTR, while had no additive effect with genistein (GEN). In ex vivo studies, HMF and HTF could stimulate transepithelial Cl(-) secretion in rat colonic mucosa and enhance fluid secretion in mouse trachea submucosal glands. These results suggest that HMF and HTF may potentiate CFTR Cl(-) channel activities through both elevation of cAMP level and binding to CFTR protein pathways. The results provide new clues in elucidating structure and activity relationship of flavonoid CFTR activators. HMF might be developed as a new drug in the therapy of CFTR-related diseases such as bronchiectasis and habitual constipation.
Animals
;
Colforsin
;
Colon
;
metabolism
;
Cystic Fibrosis Transmembrane Conductance Regulator
;
drug effects
;
Flavones
;
physiology
;
Flavonoids
;
pharmacology
;
Genistein
;
Intestinal Mucosa
;
metabolism
;
Mice
;
Rats
3.Effect of DA-9701 on Colorectal Distension-Induced Visceral Hypersensitivity in a Rat Model.
Eun Ran KIM ; Byung Hoon MIN ; Tae Ho LEE ; Miwon SON ; Poong Lyul RHEE
Gut and Liver 2014;8(4):388-393
BACKGROUND/AIMS: DA-9701 is a newly developed drug made from the vegetal extracts of Pharbitidis semen and Corydalis tuber. The aim of this study was to evaluate the effect of DA-9701 on colorectal distension (CRD)-induced visceral hypersensitivity in a rat model. METHODS: Male Sprague-Dawley rats were subjected to neonatal colon irritation (CI) using CRD at 1 week after birth (CI group). At 6 weeks after birth, CRD was applied to these rats with a pressure of 20 to 90 mm Hg, and changes in the mean arterial pressure (MAP) were measured at baseline (i.e., without any drug administration) and after the administration of different doses of DA-9701. RESULTS: In the absence of DA-9701, the MAP changes after CRD were significantly higher in the CI group than in the control group at all applied pressures. In the control group, MAP changes after CRD were not significantly affected by the administration of DA-9701. In the CI group, however, the administration of DA-9701 resulted in a significant decrease in MAP changes after CRD. The administration of DA-9701 at a dose of 1.0 mg/kg produced a more significant decrease in MAP changes than the 0.3 mg/kg dose. CONCLUSIONS: The administration of DA-9701 resulted in a significant increase in pain threshold in rats with CRD-induced visceral hypersensitivity.
Analgesics/administration & dosage/*pharmacology
;
Animals
;
Arterial Pressure/drug effects
;
Colon, Descending/physiology
;
Dilatation/methods
;
Gastrointestinal Agents/administration & dosage/*pharmacology
;
Male
;
Pain Threshold/drug effects
;
Plant Preparations/administration & dosage/*pharmacology
;
Rats, Sprague-Dawley
;
Visceral Pain/physiopathology/*prevention & control
4.Chemopreventive and metabolic effects of inulin on colon cancer development.
Emilia HIJOVA ; Viktoria SZABADOSOVA ; Jana STOFILOVA ; Gabriela HRCKOVA
Journal of Veterinary Science 2013;14(4):387-393
Prebiotics modulate microbial composition and ensure a healthy gastrointestinal tract environment that can prevent colon cancer development. These natural dietary compounds are therefore potential chemopreventive agents. Thirty Sprague-Dawley rats (4 months old) were experimentally treated with procarcinogen dimethylhydrazine to induce colon cancer development. The rats were randomly assigned to three groups: a control group (CG), a group treated with dimethylhydrazine (DMH), and a group given DMH and inulin, a prebiotic (DMH+PRE). The effects of inulin on the activities of bacterial glycolytic enzymes, short-chain fatty acids, coliform and lactobacilli counts, cytokine levels, and cyclooxygenase-2 (COX-2) and transcription nuclear factor kappa beta (NFkappaB) immunoreactivity were measured. Inulin significantly decreased coliform counts (p < 0.01), increased lactobacilli counts (p < 0.001), and decreased the activity of beta-glucuronidase (p < 0.01). Butyric and propionic concentrations were decreased in the DMH group. Inulin increased its concentration that had been reduced by DMH. Inulin decreased the numbers of COX-2- and NFkappaB-positive cells in the tunica mucosae and tela submucosae of the colon. The expression of IL-2, TNFalpha, and IL-10 was also diminished. This 28-week study showed that dietary intake of inulin prevents preneoplastic changes and inflammation that promote colon cancer development.
Animals
;
Bacterial Proteins/genetics/metabolism
;
Colon/enzymology
;
Colonic Neoplasms/chemically induced/*drug therapy/metabolism
;
Colony Count, Microbial
;
Cyclooxygenase 2/genetics/metabolism
;
Cytokines/blood/genetics
;
Diet
;
Dietary Supplements/analysis
;
Dimethylhydrazines/toxicity
;
Enterobacteriaceae/drug effects/physiology
;
Fatty Acids, Volatile/genetics/metabolism
;
Female
;
Gene Expression Regulation/drug effects
;
Inulin/administration & dosage/*metabolism
;
Lactobacillaceae/drug effects/physiology
;
Male
;
NF-kappa B/genetics/metabolism
;
Prebiotics/*analysis
;
Rats
;
Rats, Sprague-Dawley
5.Benzoxazole Derivative B-98 Ameliorates Dextran Sulfate Sodium-induced Acute Murine Colitis and the Change of T Cell Profiles in Acute Murine Colitis Model.
Eun Mi SONG ; Sung Ae JUNG ; Jong Soo LEE ; Seung Eun KIM ; Ki Nam SHIM ; Hye Kyung JUNG ; Kwon YOO ; Hae Young PARK
The Korean Journal of Gastroenterology 2013;62(1):33-41
BACKGROUND/AIMS: The unique role of enzyme 5-lipoxygenase (5-LO) in the production of leukotrienes makes it a therapeutic target for inflammatory bowel disease (IBD). The aim of this study was to evaluate the effects of B-98, a newly synthesized benzoxazole derivatives and a novel 5-LO inhibitor, in a mouse model of IBD induced by dextran sulfate sodium (DSS). METHODS: C57BL/6 mice were randomly assigned to four groups: normal control, DSS colitis (DSS+saline), low dose B-98 (DSS+B-98 20 mg/kg) and high dose B-98 (DSS+B-98 100 mg/kg). B-98 was administered with 3% DSS intraperitoneally. The severity of the colitis was assessed via the disease activity index (DAI), colon length, and histopathologic grading. The production of inflammatory cytokines interleukin (IL)-6 was determined by RT-PCR. Th cells were examined for the proportion of Th1 cell, Th2 cell, Th9 cell, Th17 cell and Treg cell using intracellular cytometry. RESULTS: The B-98 group showed lower DAI, less shortening of the colon length and lower histopathologic grading compared with the DSS colitis group (p<0.01). The expression of IL-6 in colonic tissue was significantly lower in the B-98 groups than the DSS colitis group (p<0.05). The cellular profiles revealed that the Th1, Th9 and Th17 cells were increased in the DSS colitis group compared to the B-98 group (p<0.05). CONCLUSIONS: Our results suggest that acute intestinal inflammation is reduced in the group treated with B-98 by Th1, Th9 and Th17 involved cellular immunity.
Acute Disease
;
Animals
;
Arachidonate 5-Lipoxygenase/chemistry/metabolism
;
Benzoxazoles/chemistry/*pharmacology
;
Colitis/chemically induced/pathology/*prevention & control
;
Colon/drug effects/pathology/physiology
;
Dextran Sulfate/toxicity
;
Disease Models, Animal
;
Forkhead Transcription Factors/metabolism
;
Injections, Intraperitoneal
;
Interleukin-6/genetics/metabolism
;
Lipoxygenase Inhibitors/chemistry/*pharmacology
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Severity of Illness Index
;
T-Lymphocytes/classification/*drug effects/metabolism
6.Impact of probiotics on toll-like receptor 4 expression in an experimental model of ulcerative colitis.
Xia YANG ; Yu FU ; Jun LIU ; Hong-Yu REN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(5):661-665
Toll-like receptors (TLRs) are key components of the innate immune system which trigger antimicrobial host defense responses. This study aimed to investigate the impact of probiotics (Lactobacillus, Bifidobacterium) on the expression of TLR4 and tumor necrosis factor-alpha (TNF-α) in the colon mucosa of rat experimental ulcerative colitis model induced by trinitrobenzene sulfonic acid (TNBS)/ethanol and immune complexes. The gross and histological changes of the colonic mucosa were observed and assessed by the means-standard deviation and independent samples t-test. The protein expression levels of TLR4 and TNF-α were detected by using immunohistochemistry and Western blotting, respectively. It was revealed that there was visible infiltration of inflammatory cells, formation of crypt abscess, and the reduction of goblet cells in the colon tissue of experimental models. As compared with the control group, the levels of TLR4 and TNF-α protein were significantly increased in the model group (P<0.01 for both). No significant difference was found in the expression of TLR4 and TNF-α between the two-week probiotics treatment group and the model group (P>0.05), whereas significant reductions were shown in rats which were treated with probiotics for four weeks as compared with the model group (P<0.01). There was no significant difference between two probiotics-treated groups. Our results implied that probiotics were likely to play a key role in protecting ulcerative colitis by reducing the inflammatory factor TNF-α expression through inhibiting the TLR4 expression in the colon tissue of experimental models.
Animals
;
Bifidobacterium
;
physiology
;
Blotting, Western
;
Colitis, Ulcerative
;
chemically induced
;
metabolism
;
Colon
;
drug effects
;
metabolism
;
microbiology
;
Immunohistochemistry
;
Intestinal Mucosa
;
drug effects
;
metabolism
;
microbiology
;
Lactobacillus
;
physiology
;
Male
;
Probiotics
;
pharmacology
;
Rabbits
;
Rats
;
Rats, Sprague-Dawley
;
Time Factors
;
Toll-Like Receptor 4
;
biosynthesis
;
Trinitrobenzenesulfonic Acid
;
Tumor Necrosis Factor-alpha
;
metabolism
7.Methionine Enhances the Contractile Activity of Human Colon Circular Smooth Muscle In Vitro.
Eun Kyung CHOE ; Jung Sun MOON ; Kyu Joo PARK
Journal of Korean Medical Science 2012;27(7):777-783
Effective drug to manage constipation has been unsatisfactory. We sought to determine whether methionine has effect on the human colon. Human colon tissues were obtained from the specimens of colon resection. Microelectrode recording was performed and contractile activity of muscle strips and the propagation of the contractions in the colon segment were measured. At 10 microM, methionine depolarized the resting membrane potential (RMP) of circular muscle (CM) cells. In the CM strip, methionine increased the amplitude and area under the curve (AUC) of contractions. In the whole segment of colon, methionine increased the amplitude and AUC of the high amplitude contractions in the CM. These effects on contraction were maximal at 10 microM and were not observed in longitudinal muscles in both the strip and the colon segment. Methionine reversed the effects of pretreatment with sodium nitroprusside, tetrodotoxin and Nw-oxide-L-arginine, resulting in depolarization of the RMP, and increased amplitude and AUC of contractions in the muscle strip. Methionine treatment affected the wave pattern of the colon segment by evoking small sized amplitude contractions superimposed on preexisting wave patterns. Our results indicate that a compound mimicking methionine may provide prokinetic functions in the human colon.
Area Under Curve
;
Arginine/pharmacology
;
Colon/drug effects/physiology
;
Humans
;
Membrane Potentials/drug effects
;
Methionine/*pharmacology
;
Microelectrodes
;
Muscle Contraction/*drug effects
;
Muscle, Smooth/drug effects/*physiology
;
Nitroprusside/pharmacology
;
Tetrodotoxin/pharmacology
8.Effect of tongbian navel paste on colonic motility in children with constipation of slow transmission type.
Chinese Journal of Integrated Traditional and Western Medicine 2009;29(2):158-160
OBJECTIVETo observe the therapeutic effect of Tongbian Navel Paste (TBP, a self-formulated preparation consisting of both Chinese herbal and Western medicines) on children with constipation of slow transmission type (CSTT) and it influence on patients' colonic motility.
METHODSSixty-eight children with CSTT were randomly assigned to two groups, 38 in the treatment group treated with TBP, and 30 in the control group treated with oral taking Maren Zipi pill. The changes of clinical symptoms, and the outcomes of colon transmission test were observed and compared before and after treatment.
RESULTSColon transmission test showed the 48 h and 72 h barium discharging rate (%) in the treatment group before treatment was 10.1 +/- 3.2 and 46.2 +/- 3.9; after treatment, it raised to 59.9 +/- 4.1 and 73.6 +/- 3.6 respectively (P <0.05). The total effective rate in the treatment group was 89.47% and 73.33% in the control group, the difference between groups was significant (P<0.05).
CONCLUSIONTBP could promote the motility of colon, it is a safe, convenient and effective preparation for treatment of CSTT.
Administration, Cutaneous ; Adolescent ; Child ; Colon ; physiology ; Constipation ; drug therapy ; Drugs, Chinese Herbal ; administration & dosage ; Female ; Gastrointestinal Motility ; drug effects ; Humans ; Male ; Phytotherapy
9.Effect of Itopride Hydrochloride on the Ileal and Colonic Motility in Guinea Pig In Vitro.
Hyun Chul LIM ; Young Gyun KIM ; Jung Hyun LIM ; Hee Sun KIM ; Hyojin PARK
Yonsei Medical Journal 2008;49(3):472-478
PURPOSE: Itopride hydrochloride (itopride) inhibits acetylcholinesterase (AChE) and antagonizes dopamine D(2) receptor, and has been used as a gastroprokinetic agent. However, its prokinetic effect on the small bowel or colon has not yet been thoroughly investigated. The aim of this study was to investigate the effects of itopride on motor functions of the ileum and colon in guinea pigs. MATERIALS AND METHODS: The distal ileum was excised and the activity of peristaltic contraction was determined by measuring the amplitude and propagation velocity of peristaltic contraction. The distal colon was removed and connected to the chamber containing Krebs-Henseleit solution (K-H solution). Artificial fecal matter was inserted into the oral side of the lumen, and moved toward the anal side by intraluminal perfusion via peristaltic pump. Colonic transit times were measured by the time required for the artificial feces to move a total length of 10cm with 2-cm intervals. RESULTS: In the ileum, itopride accelerated peristaltic velocity at higher dosage (10(-10)-10(-6)M) whereas neostigmine accelerated it only with a lower dosage (10(-10)-10(-9)M). Dopamine (10(-8)M) decelerated the velocity that was recovered by itopride infusion. Itopride and neostigmine significantly shortened colonic transit at a higher dosage (10(-10)-10(-6)M). Dopamine (10(-8)M) delayed colonic transit time that was also recovered after infusion of itopride. CONCLUSION: Itopride has prokinetic effects on both the ileum and colon, which are regulated through inhibitory effects on AChE and antagonistic effects on dopamine D(2) receptor.
Animals
;
Benzamides/*pharmacology
;
Benzyl Compounds/*pharmacology
;
Cholinesterase Inhibitors/pharmacology
;
Colon/*drug effects/physiology
;
Dopamine/pharmacology
;
Dose-Response Relationship, Drug
;
Gastrointestinal Motility/*drug effects
;
Guinea Pigs
;
Ileum/*drug effects/physiology
;
Neostigmine/pharmacology
;
Receptors, Dopamine D1/antagonists & inhibitors/physiology
10.Experimental studies of effects of Wujiwan extracts in different compatibilities on motility of isolated colon in guinea pig.
Ya-Jie WANG ; Yu DONG ; Xiao-Xin ZHU
China Journal of Chinese Materia Medica 2007;32(20):2161-2165
OBJECTIVETo investigate the effects of Wujiwan extracts in two different compatibility proportions (named the No. 1 and No. 2 respectively) on motility of isolated colon in guinea pig, and compare the therapeutic effects with each other.
METHODTo observe the function of the No. 1 and No. 2 with different concentrations on colon contraction induced by acetylcholine (Ach) and inhibition induced by adrenalin (Ad) respectively, and calculate the EC, with the method of Bliss.
RESULTThe No. 1 and No. 2 both could significantly inhibit the contraction of colon, and in 15 minutes, there was significant time-dependence and concentration-dependence, and EC50 of the No. 1 was lower than that of No. 2. However, but when the colonic was inhibited by Ad, at the time of 9 min and 15 min, the No. 1 at the level of 300 mg x L(-1), and at the time of 15 min, the No. 2 at the level of 30 mg x L(-1), could both excite the colon significantly (P < 0. 05).
CONCLUSIONOur experiments indicate that the No. 1 and No. 2 both can significantly inhibit the colon contraction in guinea pig, and the No. 1 is superior to the No. 2 to some extent. And at the same time, we also can conclude that the No. 1 and No. 2 have exciting effects on inhibitory colon. Meanwhile, the No. 1 and No. 2 each have its own advantages based on the common therapeutic effects.
Acetylcholine ; pharmacology ; Animals ; Colon ; drug effects ; physiology ; Coptis ; chemistry ; Dose-Response Relationship, Drug ; Drug Combinations ; Drugs, Chinese Herbal ; administration & dosage ; isolation & purification ; pharmacology ; Epinephrine ; pharmacology ; Evodia ; chemistry ; Female ; Gastrointestinal Motility ; drug effects ; Guinea Pigs ; In Vitro Techniques ; Male ; Muscle Contraction ; drug effects ; Paeonia ; chemistry ; Plants, Medicinal ; chemistry

Result Analysis
Print
Save
E-mail