1.Therapeutic effect of ursodeoxycholic acid-berberine supramolecular nanoparticles on ulcerative colitis based on supramolecular system induced by weak bond.
Shan GAO ; Feng GAO ; Jing-Wei KONG ; Zhi-Jia WANG ; Hao-Cheng ZHENG ; Xin-Qi JIANG ; Shu-Jing XU ; Shan-Lan LI ; Ming-Jun LU ; Zi-Qi DAI ; Fu-Hao CHU ; Bing XU ; Hai-Min LEI
China Journal of Chinese Materia Medica 2023;48(10):2739-2748
		                        		
		                        			
		                        			Ulcerative colitis(UC) is a recurrent, intractable inflammatory bowel disease. Coptidis Rhizoma and Bovis Calculus, serving as heat-clearing and toxin-removing drugs, have long been used in the treatment of UC. Berberine(BBR) and ursodeoxycholic acid(UDCA), the main active components of Coptidis Rhizoma and Bovis Calculus, respectively, were employed to obtain UDCA-BBR supramolecular nanoparticles by stimulated co-decocting process for enhancing the therapeutic effect on UC. As revealed by the characterization of supramolecular nanoparticles by field emission scanning electron microscopy(FE-SEM) and dynamic light scattering(DLS), the supramolecular nanoparticles were tetrahedral nanoparticles with an average particle size of 180 nm. The molecular structure was described by ultraviolet spectroscopy, fluorescence spectroscopy, infrared spectroscopy, high-resolution mass spectrometry, and hydrogen-nuclear magnetic resonance(H-NMR) spectroscopy. The results showed that the formation of the supramolecular nano-particle was attributed to the mutual electrostatic attraction and hydrophobic interaction between BBR and UDCA. Additionally, supramolecular nanoparticles were also characterized by sustained release and pH sensitivity. The acute UC model was induced by dextran sulfate sodium(DSS) in mice. It was found that supramolecular nanoparticles could effectively improve body mass reduction and colon shortening in mice with UC(P<0.001) and decrease disease activity index(DAI)(P<0.01). There were statistically significant differences between the supramolecular nanoparticles group and the mechanical mixture group(P<0.001, P<0.05). Enzyme-linked immunosorbent assay(ELISA) was used to detect the serum levels of tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6), and the results showed that supramolecular nanoparticles could reduce serum TNF-α and IL-6 levels(P<0.001) and exhibited an obvious difference with the mechanical mixture group(P<0.01, P<0.05). Flow cytometry indicated that supramolecular nanoparticles could reduce the recruitment of neutrophils in the lamina propria of the colon(P<0.05), which was significantly different from the mechanical mixture group(P<0.05). These findings suggested that as compared with the mechanical mixture, the supramolecular nanoparticles could effectively improve the symptoms of acute UC in mice. The study provides a new research idea for the poor absorption of small molecules and the unsatisfactory therapeutic effect of traditional Chinese medicine and lays a foundation for the research on the nano-drug delivery system of traditional Chinese medicine.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Colitis, Ulcerative/drug therapy*
		                        			;
		                        		
		                        			Ursodeoxycholic Acid/adverse effects*
		                        			;
		                        		
		                        			Berberine/pharmacology*
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/pharmacology*
		                        			;
		                        		
		                        			Drugs, Chinese Herbal/pharmacology*
		                        			;
		                        		
		                        			Colon
		                        			;
		                        		
		                        			Nanoparticles
		                        			;
		                        		
		                        			Dextran Sulfate/adverse effects*
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Colitis/chemically induced*
		                        			
		                        		
		                        	
2.Mechanism of Shenling Baizhu Powder on treatment of ulcerative colitis based on NLRP3 inflammatory.
Yu-Hui LIU ; Zi-Ling RONG ; Hong-Yang ZHU ; Yu-Ting LI ; Yu YOU
China Journal of Chinese Materia Medica 2022;47(21):5863-5871
		                        		
		                        			
		                        			This study deciphered the mechanism of Shenling Baizhu Powder in treatment of mouse model of ulcerative colitis(UC) via NOD-like receptor thermoprotein domain 3(NLRP3) signaling pathway. After three days of adaptive feeding, 70 SPF-grade BALB/c mice were randomized into 7 groups: normal group, model group(dextran sodium sulfate, DSS), mesalazine group(DSS + 5-aminosalicylic acid, 5-ASA), NLRP3 inhibitor group(DSS + MCC950), and high-, medium-, and low-dose Shenling Baizhu Powder groups(DSS + high-, medium-, and low-dose Shenling Baizhu Powder), with 10 mice per group. The normal group had free access to double distilled water, and the remaining groups had free access to DSS-containing water to establish the acute UC model. Intragastric administration was started at the same time as modeling for one week. During the experiment, the general mental state and disease activity of each group of mice were recorded and scored. After the experiment, colon and serum samples were collected. The pathological changes in colon tissue were observed through hematoxylin-eosin(HE) staining. Enzyme-linked immunosorbent assay(ELISA) was employed to determine the levels of interleukin-18(IL-18) and myeloperoxidase(MPO) in colon tissue and interleukin-1β(IL-1β) in serum. Immunofluorescence(IF) and immunohistochemistry(IHC) methods were employed to examine the expression of NLRP3 and IL-18 in colon tissue. Western blot was employed to measure the protein levels of NLRP3, apoptosis-associated speck-like protein(ASC), cystein-aspartate protease 1(caspase-1), and downstream inflammatory cytokines in colon tissue. Compared with the normal group, the modeling of UC increased the disease activity index(DAI), colon pathological injury score, IL-1β level in serum, and IL-18 and MPO levels in colon tissue(P<0.05, P<0.01). Furthermore, the modeling caused obvious pathological changes and up-regulated the expression of NLRP3, caspase-1, ASC, pro-IL-1β, cleaved-IL-1β, pro-IL-18, and cleaved-IL-18 in the colon(P<0.01). Compared with the model group, the administration of corresponding drugs decreased the DAI, pathological injury score, IL-1β level in serum, and IL-18 and MPO levels in colon tissue, and down-regulated the protein levels of NLRP3, caspase-1, ASC, pro-IL-1β, cleaved-IL-1β, pro-IL-18, and cleaved-IL-18 in the colon(P<0.05, P<0.01). According to the results of previous study and this study, we concluded that Shenling Baizhu Powder can alleviate the inflammatory response and intestinal damage of DSS-induced UC by regulating the expression of the proteins and inflammatory cytokines associated with NLRP3 signaling pathway.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Colitis, Ulcerative/drug therapy*
		                        			;
		                        		
		                        			Dextran Sulfate/adverse effects*
		                        			;
		                        		
		                        			NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
		                        			;
		                        		
		                        			Interleukin-18/genetics*
		                        			;
		                        		
		                        			Powders
		                        			;
		                        		
		                        			Colon/metabolism*
		                        			;
		                        		
		                        			Caspase 1
		                        			;
		                        		
		                        			Mesalamine/adverse effects*
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Cytokines/metabolism*
		                        			;
		                        		
		                        			Water
		                        			;
		                        		
		                        			Colitis/pathology*
		                        			
		                        		
		                        	
3.YAP regulates intestinal epithelial cell proliferation through activation of STAT3 in DSS-induced colitis and associated cancer.
Journal of Central South University(Medical Sciences) 2022;47(12):1637-1645
		                        		
		                        			OBJECTIVES:
		                        			Ulcerative colitis (UC) is a chronic, relapsing inflammation of the colon. Impaired epithelial repair is an important biological features of UC. Accelerating intestinal epithelial repair to achieve endoscopic mucosal healing has become a key goal in UC. Yes-associated protein (YAP) is a key transcriptional coactivator that regulates organ size, tissue growth and tumorigenesis. Growing studies have focused on the role of YAP in intestinal epithelial regeneration. This study explore the molecular mechanism for the role YAP in modulating colonic epithelial proliferation, repair, and the development of colitis associated cancer.
		                        		
		                        			METHODS:
		                        			We constructed the acute colitis mouse model through successive 5 days of 3% dextran sulfate sodium salt (DSS) induction. Then YAP-overexpressed mouse model was constructed by intraperitoneal injection the YAP overexpressed and negative control lentivirus into DSS mice. On the 5th day of DSS induction and the 5th day of normal drinking water after removing DSS (5+5 d), the mice were killed by spinal dislocation. The colon was taken to measure the length, and the bowel 1-2 cm near the anal canal was selected for immunohistochemical and Western blotting. We used YAP over-expressed colonic epithelial cells and small interfering signal transducer and activator of transcription 3 (STAT3) RNA to probe the regulation of YAP on STAT3, using cell counting kit-8 and scratch assays to explore the role of YAP on colonic epithelial cell proliferation. Finally, we conducted co-immunoprecipitation to test the relationship between YAP and STAT3.
		                        		
		                        			RESULTS:
		                        			After DSS treatment, the expression of YAP was dramatically diminished in crypts. Compared with the empty control mice, overexpression of YAP drastically accelerated epithelial regeneration after DSS induced colitis, presenting with more intact of structural integrity in intestinal epithelium and a reduction in the number of inflammatory cells in the mucosa. Further Western blotting, functional experiment and co-immunoprecipitation analyses showed that the expression of YAP in nucleus was significantly increased by 2 h post DSS cessation, accompanied with up-regulated total protein levels of STAT3 and phosphorylated-STAT3 (p-STAT3). Overexpression of YAP enhanced the expression of STAT3, p-STAT3, and their transcriptional targets including c-Myc and Cyclin D1. In addition, it promoted the proliferation and the "wound healing" of colonic cells. However, these effects were reversed when silencing STAT3 on YAP-overexpressed FHC cells. Moreover, protein immunoprecipitation indicated that YAP could directly interact with STAT3 in the nucleus, up-regulatvng the expressvon of STAT3. Finally, during the process of CAC, overexpression of YAP mutant caused the down-regulated expression of STAT3 and inhibited the development and progress of CAC.
		                        		
		                        			CONCLUSIONS
		                        			YAP activates STAT3 signaling in regulation of epithelial cell proliferation and promotes mucosal regeneration after DSS induced colitis, which may serve as a potential therapeutic target in UC. However, persistent and excessive YAP activation may promote CAC development.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Colitis/drug therapy*
		                        			;
		                        		
		                        			Colon/metabolism*
		                        			;
		                        		
		                        			Dextran Sulfate/adverse effects*
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Intestinal Mucosa
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Neoplasm Recurrence, Local/metabolism*
		                        			;
		                        		
		                        			STAT3 Transcription Factor/metabolism*
		                        			;
		                        		
		                        			YAP-Signaling Proteins/metabolism*
		                        			
		                        		
		                        	
4.Anti-inflammatory effect of interleukin-35 in mice with colitis and its mechanism.
Zhanjun LU ; Yangyang HU ; Sisi LI ; Lijuan ZANG ; Weiliang JIANG ; Jianjiong WU ; Xiening WU ; Yue ZENG ; Xingpeng WANG
Journal of Zhejiang University. Medical sciences 2018;47(5):499-506
		                        		
		                        			OBJECTIVE:
		                        			To investigate the anti-inflammatory effect and mechanisms of interleukin-35 (IL-35) in inflammatory bowel disease.
		                        		
		                        			METHODS:
		                        			BALB/c mice were divided into three groups with 10 mice in each group:control group, model group (oral administration of 4% glucan sodium sulfate for 7 d) and IL-35-treated group (oral administration of 4% glucan sodium sulfate for 7 d, intraperitoneal injection of 2 μg IL-35 at d2-5). Disease activity index (DAI) was scored every day. After 7 d, the mice were sacrificed, and the serum and intestinal tissue samples were collected. The gross morphology of the colon was observed; HE staining was used to observe the pathological changes of colon tissue; flow cytometry was employed to detect the change of macrophage polarization ratio in colon tissue; the mRNA expression levels of cytokines IL-6, TNF-α, IFN-γ, IL-10 and SHIP1 in colon tissue were determined by real-time quantitative RT-PCR; the expression and distribution of SHIP1 in colon tissue was measured by immunohistochemistry; Western blotting was adopted to detect the expression level of SHIP1 protein in colonic intestinal tissues of each group.
		                        		
		                        			RESULTS:
		                        			The DAI scores of the mice in the model group were higher than those in the control group, while the DAI scores in the IL-35-treated group were lower than those in the model group (all <0.01). Compared with the control group, the colon length was significantly shortened in the model group (<0.05), while the colon length of the IL-35-treated group had an increasing trend compared with the model group, but the difference was not statistically significant (>0.05). Compared with the model group, microscopic inflammatory infiltration score was decreased and microscopic crypt destruction and score was significantly lower in IL-35-treated group (all <0.05). The relative expression of proinflammatory cytokines IL-6, TNF-α and IFN-γ in the colon tissue of IL-35-treated group was decreased compared with the model group, while the relative expression of IL-10 mRNA was higher than that of the model group (all <0.05). Compared with the control group, the proportion of M1 macrophages in the model group increased (<0.05), while the proportion of M1 macrophages in the IL-35-treated group was lower than that in the model group (<0.05). The relative expression of SHIP1 mRNA and protein in the colon tissue of IL-35-treated group was higher than that in the model group (all <0.05).
		                        		
		                        			CONCLUSIONS
		                        			IL-35 can inhibit the polarization of M1 macrophages and regulate inflammatory cytokines to promote anti-inflammatory effect on mice with colitis.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Anti-Inflammatory Agents
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Colitis
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Colon
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cytokines
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Glucans
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Interleukins
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
		                        			;
		                        		
		                        			genetics
		                        			
		                        		
		                        	
5.Effect of total triterpenoids of Chaenomeles speciosa on PPARγ/SIRT1/NF-κBp65 signaling pathway and intestinal mucosal barrier of ulcerative colitis induced by DSS in mice.
Xing-Jun XIONG ; Xiao-Mei LI ; Yu-Min HE ; Xiao-Qin LI ; Hai-Yan XU ; Min-Lu FENG ; Hai-Bo HE ; Ji-Hong ZHANG ; Shu ZHU ; KOMATSU KATSUKO ; Kun ZOU
China Journal of Chinese Materia Medica 2018;43(21):4295-4304
		                        		
		                        			
		                        			To observe the effect of total triterpenoids of Chaenomeles speciosa on PPARγ/SIRT1/NF-κBp65 signaling pathway and intestinal mucosal barrier of ulcerative colitis induced by dextran sulfate sodium (DSS) in mice, C57BL/6 mice were randomly divided into normal group, model group, total triterpenoids of C. speciosa (50, 100 mg·kg⁻¹) groups and sulfasalazine (250 mg·kg⁻¹) group. The ulcerative colitis (UC) model was induced by orally administering 2.5% DSS to the experimental mice, and the corresponding drugs were given to each group 3 days before the administration with 2.5% DSS. The normal group and the model group were given the equal volume of 0.5% carboxymethyl cellulose sodium solution by gavage continuously for 10 days, q.d. The general conditions of the mice were observed on a daily basis, and the disease activity index (DAI) score was recorded. On the 10th day after the treatment, mice were put to death, the contents of TNF-α, IL-1β, IL-6, IFN-γ, IL-4 and IL-10 in the blood were detected, colon length was measured, colon mucosa damage index (CMDI) score was calculated, and MPO activity detection and histomorphology analysis were conducted. Real-time PCR was applied to detect the mRNA expressions of E-cadherin, occluding,MUC2 and TFF3; the protein expressions of SIRT1, IKKβ, p-IKKβ, IκBα, p-IκBα and cytosol and nucleus PPARγ, NF-κBp65 in intestinal tissue were detected by western blot. The results indicated that total triterpenoids of C. speciosa (50, 100 mg·kg⁻¹) could significantly improve the general conditions of UC mice, reduce the DAI, CMDI and histopathological scores, increase the colon length, reduce the colonic mucosa ulcers, erosion and inflammatory infiltration, restore the normal intestinal mucosal barrier function, reduce the contents of TNF-α, IL-1β, IL-6, IFN-γ, increase the contents of IL-4 and IL-10 in the blood, inhibit MPO activity in colon tissue, up-regulate the mRNA expressions of E-cadherin, occludin, MUC2 and TFF3 in colon tissue, down-regulate the protein expressions of cytosol PPARγ, tissue p-IKKβ, p-IκBα and nucleus NF-κBp65 in the colon tissue, decrease the p-IKKβ/IKKβ and p-IκBα/IκBα ratios, up-regulate the protein expressions of nucleus PPARγ, tissue SIRT1 and cytosol NF-κBp65 (<0.05 or <0.01, respectively), with a dose-effect relationship between the total triterpenoids of C. speciosa treated groups. These findings suggested that total triterpenoids of C. speciosa had a significantly therapeutic effect on UC mice induced by DSS, its mechanism might be related to the regulation of PPARγ/SIRT1/NF-κBp65 signaling pathway, the inhibition of pro-inflammatory factor formation and the up-regulation of protein expression of protective factors.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Colitis, Ulcerative
		                        			;
		                        		
		                        			chemically induced
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			Colon
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Dextran Sulfate
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Intestinal Mucosa
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			PPAR gamma
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Random Allocation
		                        			;
		                        		
		                        			Rosaceae
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Sirtuin 1
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Transcription Factor RelA
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
6.Bitter Melon Powder Protects against Obesity-associated Fatty Liver Disease by Improving Colonic Microenvironment in Rats with High-fat Diet-induced Obesity.
Juan BAI ; Ying ZHU ; Ying DONG
Biomedical and Environmental Sciences 2017;30(8):611-615
		                        		
		                        			
		                        			This study explored how bitter melon powder (BMP) alters the colonic microenvironment during the development of obesity-associated fatty liver in rats. We observed that BMP effectively inhibited the body weight gain and lipid accumulation in the liver, ameliorated glucose intolerance, and increased the colon weight after an 8-week treatment compared to that in the high-fat diet (HFD) group. BMP significantly decreased fecal water toxicity towards HT-29 cells, as revealed by the cell counting kit (CCK)-8 assay results, and the mRNA expression of Toll-like receptor 4 (TLR4) in colon mucosa. Additionally, gut permeability in the BMP group was restored to normal levels. Finally, BMP alleviated the inflammatory state of the rat colon mucosa and liver tissues as well as the systemic inflammation.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Colon
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Dietary Fats
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			Fatty Liver
		                        			;
		                        		
		                        			etiology
		                        			;
		                        		
		                        			prevention & control
		                        			;
		                        		
		                        			Feces
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			HT29 Cells
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Momordica charantia
		                        			;
		                        		
		                        			Obesity
		                        			;
		                        		
		                        			complications
		                        			;
		                        		
		                        			Powders
		                        			;
		                        		
		                        			Rats
		                        			
		                        		
		                        	
7.Oral administration of red ginseng powder fermented with probiotic alleviates the severity of dextran-sulfate sodium-induced colitis in a mouse model.
Sun-Hee JANG ; Jisang PARK ; Sae-Hae KIM ; Kyung-Min CHOI ; Eun-Sil KO ; Jeong-Dan CHA ; Young-Ran LEE ; Hyonseok JANG ; Yong-Suk JANG
Chinese Journal of Natural Medicines (English Ed.) 2017;15(3):192-201
		                        		
		                        			
		                        			Red ginseng is a well-known alternative medicine with anti-inflammatory activity. It exerts pharmacological effects through the transformation of saponin into metabolites by intestinal microbiota. Given that intestinal microflora vary among individuals, the pharmacological effects of red ginseng likely vary among individuals. In order to produce homogeneously effective red ginseng, we prepared probiotic-fermented red ginseng and evaluated its activity using a dextran sulfate sodium (DSS)-induced colitis model in mice. Initial analysis of intestinal damage indicated that the administration of probiotic-fermented red ginseng significantly decreased the severity of colitis, compared with the control and the activity was higher than that induced by oral administration of ginseng powder or probiotics only. Subsequent analysis of the levels of serum IL-6 and TNF-α, inflammatory biomarkers that are increased at the initiation stage of colitis, were significantly decreased in probiotic-fermented red ginseng-treated groups in comparison to the control group. The levels of inflammatory cytokines and mRNAs for inflammatory factors in colorectal tissues were also significantly decreased in probiotic-fermented red ginseng-treated groups. Collectively, oral administration of probiotic-fermented red ginseng reduced the severity of colitis in a mouse model, suggesting that it can be used as a uniformly effective red ginseng product.
		                        		
		                        		
		                        		
		                        			Administration, Oral
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Colitis
		                        			;
		                        		
		                        			chemically induced
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Colon
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Dextran Sulfate
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Fermentation
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Lactobacillus plantarum
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Panax
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			microbiology
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Powders
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Probiotics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha
		                        			;
		                        		
		                        			immunology
		                        			
		                        		
		                        	
8.Comparative Study on Bowel Preparation Efficacy of Ascorbic Acid Containing Polyethylene Glycol by Adding Either Simethicone or 1 L of Water in Health Medical Examination Patients: A Prospective Randomized Controlled Study.
Se Hwan YEO ; Jae Hoon KWAK ; Yeo Un KIM ; Tae Ho KWON ; Jeong Bae PARK ; Jun Hyung PARK ; Yong Kook LEE ; Yun Jeong LIM ; Chang Heon YANG
The Korean Journal of Gastroenterology 2016;67(4):189-197
		                        		
		                        			
		                        			BACKGROUND/AIMS: There are no studies that looked into the bubble eliminating efficacy of polyethylene glycol with ascorbic acid (PEGA), which has been one of the shortcomings of polyethylene glycol (PEG). In this study, we compared newly introduced PEGA regimen by adding either simethicone or 1 L of water. METHODS: A prospective randomized controlled study was carried out at Dongguk Universtiy Gyeongju Hospital from July 2014 to September 2014. A total of 90 patients were randomly assigned to 3 groups; PEGA group (n=30) which served as control, simethicone addition group (n=30) to which simethicone 400 mg was additionally prescribed, and water addition group (n=30) to whom additional 1 L of water was given. Cleansing effectiveness, gas elimination efficacy, side effects, and patient satisfaction were compared between the groups. RESULTS: PEGA group demonstrated the highest cleansing effectiveness, but there was no statistically significant difference among the groups. Simethicone addition group showed significantly lesser amount of bubbles than the other groups (2.57±2.05 vs. 1.10±1.83 vs. 2.60±2.84, p=0.017). The rates of side effects in each group were 20.00% vs. 16.77% vs. 53.33%. Water addition group had significantly more side effects than the PEGA group and the simethicone addition group (p=0.003). The patient satisfaction score of each group was 3.37±0.85 vs. 3.73±0.74 vs. 3.20±0.66 with simethicone addition group showing significantly higher satisfaction than water addition group (p=0.020). CONCLUSIONS: PEGA bowel preparation agent showed satisfactory bowel cleansing despite the decrease in dosage, and addition of simethicone resulted in better bubble elimination.
		                        		
		                        		
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Ascorbic Acid/*chemistry
		                        			;
		                        		
		                        			Cathartics/adverse effects/chemistry/*pharmacology
		                        			;
		                        		
		                        			Colon/*drug effects
		                        			;
		                        		
		                        			Colonoscopy
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Middle Aged
		                        			;
		                        		
		                        			Patient Compliance
		                        			;
		                        		
		                        			Polyethylene Glycols/adverse effects/*chemistry/pharmacology
		                        			;
		                        		
		                        			Prospective Studies
		                        			;
		                        		
		                        			Simethicone/*chemistry
		                        			;
		                        		
		                        			Water/*chemistry
		                        			
		                        		
		                        	
9.Therapeutic and immunoregulatory effect of GATA-binding protein-3/T-box expressed in T-cells ratio of astragalus polysaccharides on 2,4,6-trinitrobenzene sulfonic acid-induced colitis in rats.
Yong-Jian GAO ; Feng ZHU ; Jia-Ming QIAN ; Jia-Yuan DAI
Chinese journal of integrative medicine 2016;22(12):918-924
OBJECTIVETo analyze the immunological characteristics of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model and examine the therapeutic effects and mechanisms of Astragalus polysaccharides (APS) treatment.
METHODSThirty-two male specific pathogen free Spragne-Dawley rats were randomly equally assigned to four groups: control, TNBS, APS and prednisone groups. Experimental colitis was induced by enema administration of TNBS. Then rats were treated with APS (0.5 g•kg•day, once daily) or prednisone (1.0 mg•kg•day, once daily) by gavage for 14 days. Macroscopic lesion and histological damage were determined, and activity of myeloperoxidase (MPO) was measured in the colonic tissues. Expressions of T-box expressed in T-cells (T-bet) and GATA-binding protein-3 (GATA-3) were determined by immunohistochemistry analysis and western blot.
RESULTSBoth macroscopic lesion and histological colonic damage induced by TNBS were reduced by APS and prednisone treatment. These were accompanied by significant attenuation of MPO activity (P=0.03). TNBS intervention enhanced the expression of both GATA-3 and T-bet, but the expression of T-bet was significantly enhanced than that of GATA-3, resulting in significant reduction of GATA-3/T-bet ratio (P=0.025). APS administration enhanced the expression of T-bet (P=0.04) and GATA-3 (P=0.019) in comparison to TNBS group, and resulting in an up-regulated GATA-3/T-bet ratio. Prednisone treatment inhibited both expressions; however it also resulted in up-regulation of the GATA-3/T-bet ratio.
CONCLUSIONSThese results demonstrated that APS exerted a beneficial immune regulatory effect on experimental colitis. It promoted the expression of T helper cell 1 (Th1) and T helper cell 2 (Th2) specific transcription factors but ultimately favor a shift toward Th2 phenotype, suggesting that APS possessed therapeutic potential in experimental colitis.
Animals ; Astragalus Plant ; chemistry ; Blotting, Western ; Colitis ; drug therapy ; pathology ; Colon ; drug effects ; pathology ; GATA3 Transcription Factor ; metabolism ; Immunohistochemistry ; Immunomodulation ; drug effects ; Male ; Peroxidase ; metabolism ; Polysaccharides ; pharmacology ; therapeutic use ; Rats, Sprague-Dawley ; T-Box Domain Proteins ; metabolism ; Trinitrobenzenesulfonic Acid
10.The effects of sacral nerve root electrostimulation on the colon function and its mechanisms in a rat model of spinal cord injury.
Chinese Journal of Applied Physiology 2016;32(1):34-38
OBJECTIVETo study the effects of sacral nerve root electrostimulation (SNS) on the colon function and its mechanisms in rats with spinal cord injury (SCI).
METHODSOne hundred and four Wistar rats were divided into three groups: A, B and C. A group ( n = 24) was divided into three subgroups (n = 8) for studying the bioelectricity: Normal group (NG), SCI group (SCI) and SCI group with SNS(SNS); B group( n = 24) was divided into three subgroups( n = 8) for studying the colon motility: NG, SCI and SNS. C group( n = 56) were divided into three groups for studying the change of morphology and neurotransmitters(SP and VIP): NG (n = 8), SCI (n = 24), and SNS (n = 24) . In SCI and SNS, included of three subgroups: 24, 48, 72 h after spinal cord injury (n = 8).
RESULTSIn SCI group, the activity of bioelectricity in proximal and distal colon was reduced; the colon motility was lessened, and colon mucosa appeared different degree of damage; cell-cell connections between intestinal epithelial cells were destroyed. The expressions of substance P(SP) and vasoactive intestinal peptide (VIP) in colon were decreased obviously. SNS was found to activate the bioelectricity, promote the colon motility, improve the intestinal mucosal, and increase the expressions of SP and VIP. Conclusion: SNS can activate the peristalsis, rehabilitate the motility of denervated colon, protection of the intestinal mechanical barrier between intestinal epithelial cells and tight junction, rebuild the colon function through activating the bioelectricity and increase the expressions of SP and VIP.
Animals ; Colon ; physiopathology ; Electric Stimulation Therapy ; Epithelial Cells ; drug effects ; Intestinal Mucosa ; drug effects ; Lumbosacral Region ; innervation ; Neurotransmitter Agents ; metabolism ; Rats ; Rats, Wistar ; Spinal Cord Injuries ; therapy ; Substance P ; metabolism ; Vasoactive Intestinal Peptide ; metabolism
            
Result Analysis
Print
Save
E-mail