1.Anemoside B4 regulates fatty acid metabolism reprogramming in mice with colitis-associated cancer.
Xin YANG ; Jing JIA ; Xin-Xu XIE ; Meng-Qiang WAN ; Yu-Lin FENG ; Ying-Ying LUO ; Hui OUYANG ; Jun YU
China Journal of Chinese Materia Medica 2023;48(9):2325-2333
The study aimed to investigate the effect of anemoside B4(B4) on fatty acid metabolism in mice with colitis-associated cancer(CAC). The CAC model was established by azoxymethane(AOM)/dextran sodium sulfate(DSS) in mice. Mice were randomly divided into a normal group, a model group, and low-, medium-, and high-dose anemoside B4 groups. After the experiment, the length of the mouse colon and the size of the tumor were measured, and the pathological alterations in the mouse colon were observed using hematoxylin-eosin(HE) staining. The slices of the colon tumor were obtained for spatial metabolome analysis to analyze the distribution of fatty acid metabolism-related substances in the tumor. The mRNA levels of SREBP-1, FAS, ACCα, SCD-1, PPARα, ACOX, UCP-2, and CPT-1 were determined by real-time quantitative PCR(RT-qPCR). The results revealed that the model group showed decreased body weight(P<0.05) and colon length(P<0.001), increased number of tumors, and increased pathological score(P<0.01). Spatial metabolome analysis revealed that the content of fatty acids and their derivatives, carnitine, and phospholipid in the colon tumor was increased. RT-qPCR results indicated that fatty acid de novo synthesis and β-oxidation-related genes, such as SREBP-1, FASN, ACCα, SCD-1, ACOX, UCP-2, and CPT-1 mRNA expression levels increased considerably(P<0.05, P<0.001). After anemoside B4 administration, the colon length increased(P<0.01), and the number of tumors decreased in the high-dose anemoside B4 group(P<0.05). Additionally, spatial metabolome analysis showed that anemoside B4 could decrease the content of fatty acids and their derivatives, carnitine, and phospholipids in colon tumors. Meanwhile, anemoside B4 could also down-regulate the expression of FASN, ACCα, SCD-1, PPARα, ACOX, UCP-2, and CPT-1 in the colon(P<0.05, P<0.01, P<0.001). The findings of this study show that anemoside B4 may inhibit CAC via regulating fatty acid metabolism reprogramming.
Mice
;
Animals
;
Sterol Regulatory Element Binding Protein 1
;
Colitis-Associated Neoplasms
;
PPAR alpha/genetics*
;
Colonic Neoplasms/genetics*
;
Colon
;
Azoxymethane
;
RNA, Messenger
;
Dextran Sulfate
;
Colitis/drug therapy*
;
Mice, Inbred C57BL
;
Disease Models, Animal
2.Metabolomics study of Berberidis Radix in intervening ulcerative colitis based on UPLC-Q-TOF-MS.
Xue-Li HU ; Chang-Yuan ZHOU ; Rui XU ; Hong LI ; Bao YANG ; Jian LONG ; Xing TU ; Juan NIE ; Ke-Yun LIU ; Ze-Hua HU
China Journal of Chinese Materia Medica 2023;48(9):2490-2499
The effect of Tujia medicine Berberidis Radix on endogenous metabolites in the serum and feces of mice with ulcerative colitis(UC) induced by dextran sulfate sodium(DSS) was analyzed by metabolomics technology to explore the metabolic pathway and underlying mechanism of Berberidis Radix in the intervention of UC. The UC model was induced in mice by DSS. Body weight, disease activity index(DAI), and colon length were recorded. The levels of tumor necrosis factor-α(TNF-α) and interleukin-10(IL-10) in colon tissues were determined by ELISA. The levels of endogenous metabolites in the serum and feces were detected by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS). Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were employed to characterize and screen differential metabolites. The potential metabolic pathways were analyzed by MetaboAnalyst 5.0. The results showed that Berberidis Radix could significantly improve the symptoms of UC mice and increase the level of the anti-inflammatory factor IL-10. A total of 56 and 43 differential metabolites were identified in the serum and feces, respectively, belonging to lipids, amino acids, fatty acids, etc. After the intervention by Berberidis Radix, the metabolic disorder gradually recovered. The involved metabolic pathways included biosynthesis of phenylalanine, tyrosine, and tryptophan, linoleic acid metabolism, phenylalanine metabolism, and glycerophospholipid metabolism. Berberidis Radix can alleviate the symptoms of mice with DSS-induced UC, and the mechanism may be closely related to the re-gulation of lipid metabolism, amino acid metabolism, and energy metabolism.
Mice
;
Animals
;
Colitis, Ulcerative/drug therapy*
;
Interleukin-10
;
Metabolomics/methods*
;
Chromatography, High Pressure Liquid
3.Mechanism of tryptanthrin in treatment of ulcerative colitis in mice based on serum metabolomics.
Jie ZHU ; Bao-Long HOU ; Wen CHENG ; Ting WANG ; Zheng WANG ; Yan-Ni LIANG
China Journal of Chinese Materia Medica 2023;48(8):2193-2202
This study aims to explore the effect of tryptanthrin on potential metabolic biomarkers in the serum of mice with ulcerative colitis(UC) induced by dextran sulfate sodium(DSS) based on liquid chromatography-mass spectrometry(LC-MS) and predict the related metabolic pathways. C57BL/6 mice were randomly assigned into a tryptanthrin group, a sulfasalazine group, a control group, and a model group. The mouse model of UC was established by free drinking of 3% DSS solution for 11 days, and corresponding drugs were adminsitrated at the same time. The signs of mice were observed and the disease activity index(DAI) score was recorded from the first day. Colon tissue samples were collected after the experiment and observed by hematoxylin-eosin(HE) staining. The levels of interleukin-4(IL-4), interleukin-10(IL-10), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), and interleukin-8(IL-8) in the serum were measured by enzyme linked immunosorbent assay(ELISA). The serum samples were collected from 6 mice in each group for widely targeted metabolomics. The metabolic pathways were enriched by MetaboAnalyst 5.0. The results showed that compared with the model group, tryptanthrin treatment decreased the DAI score(P<0.05), alleviated the injury of the colon tissue and the infiltration of inflammatory cells, lowered the levels of proinflammatory cytokines, and elevated the levels of anti-inflammatory cytokines in the serum. The metabolomic analysis revealed 28 differential metabolites which were involved in 3 metabolic pathways including purine metabolism, arachidonic acid metabolism, and tryptophan metabolism. Tryptanthrin may restore the metabolism of the mice with UC induced by DSS to the normal level by regulating the purine metabolism, arachidonic acid metabolism, and tryptophan metabolism. This study employed metabolomics to analyze the mechanism of tryptanthrin in the treatment of UC, providing an experimental basis for the utilization and development of tryptanthrin.
Mice
;
Animals
;
Colitis, Ulcerative/drug therapy*
;
Tryptophan
;
Arachidonic Acid/metabolism*
;
Mice, Inbred C57BL
;
Colon
;
Cytokines/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Metabolomics
;
Purines/therapeutic use*
;
Dextran Sulfate/metabolism*
;
Disease Models, Animal
;
Colitis/chemically induced*
4.Therapeutic effect of ursodeoxycholic acid-berberine supramolecular nanoparticles on ulcerative colitis based on supramolecular system induced by weak bond.
Shan GAO ; Feng GAO ; Jing-Wei KONG ; Zhi-Jia WANG ; Hao-Cheng ZHENG ; Xin-Qi JIANG ; Shu-Jing XU ; Shan-Lan LI ; Ming-Jun LU ; Zi-Qi DAI ; Fu-Hao CHU ; Bing XU ; Hai-Min LEI
China Journal of Chinese Materia Medica 2023;48(10):2739-2748
Ulcerative colitis(UC) is a recurrent, intractable inflammatory bowel disease. Coptidis Rhizoma and Bovis Calculus, serving as heat-clearing and toxin-removing drugs, have long been used in the treatment of UC. Berberine(BBR) and ursodeoxycholic acid(UDCA), the main active components of Coptidis Rhizoma and Bovis Calculus, respectively, were employed to obtain UDCA-BBR supramolecular nanoparticles by stimulated co-decocting process for enhancing the therapeutic effect on UC. As revealed by the characterization of supramolecular nanoparticles by field emission scanning electron microscopy(FE-SEM) and dynamic light scattering(DLS), the supramolecular nanoparticles were tetrahedral nanoparticles with an average particle size of 180 nm. The molecular structure was described by ultraviolet spectroscopy, fluorescence spectroscopy, infrared spectroscopy, high-resolution mass spectrometry, and hydrogen-nuclear magnetic resonance(H-NMR) spectroscopy. The results showed that the formation of the supramolecular nano-particle was attributed to the mutual electrostatic attraction and hydrophobic interaction between BBR and UDCA. Additionally, supramolecular nanoparticles were also characterized by sustained release and pH sensitivity. The acute UC model was induced by dextran sulfate sodium(DSS) in mice. It was found that supramolecular nanoparticles could effectively improve body mass reduction and colon shortening in mice with UC(P<0.001) and decrease disease activity index(DAI)(P<0.01). There were statistically significant differences between the supramolecular nanoparticles group and the mechanical mixture group(P<0.001, P<0.05). Enzyme-linked immunosorbent assay(ELISA) was used to detect the serum levels of tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6), and the results showed that supramolecular nanoparticles could reduce serum TNF-α and IL-6 levels(P<0.001) and exhibited an obvious difference with the mechanical mixture group(P<0.01, P<0.05). Flow cytometry indicated that supramolecular nanoparticles could reduce the recruitment of neutrophils in the lamina propria of the colon(P<0.05), which was significantly different from the mechanical mixture group(P<0.05). These findings suggested that as compared with the mechanical mixture, the supramolecular nanoparticles could effectively improve the symptoms of acute UC in mice. The study provides a new research idea for the poor absorption of small molecules and the unsatisfactory therapeutic effect of traditional Chinese medicine and lays a foundation for the research on the nano-drug delivery system of traditional Chinese medicine.
Animals
;
Mice
;
Colitis, Ulcerative/drug therapy*
;
Ursodeoxycholic Acid/adverse effects*
;
Berberine/pharmacology*
;
Interleukin-6
;
Tumor Necrosis Factor-alpha/pharmacology*
;
Drugs, Chinese Herbal/pharmacology*
;
Colon
;
Nanoparticles
;
Dextran Sulfate/adverse effects*
;
Disease Models, Animal
;
Colitis/chemically induced*
7.ADT-OH improves intestinal barrier function and remodels the gut microbiota in DSS-induced colitis.
Zhiqian BI ; Jia CHEN ; Xiaoyao CHANG ; Dangran LI ; Yingying YAO ; Fangfang CAI ; Huangru XU ; Jian CHENG ; Zichun HUA ; Hongqin ZHUANG
Frontiers of Medicine 2023;17(5):972-992
Owing to the increasing incidence and prevalence of inflammatory bowel disease (IBD) worldwide, effective and safe treatments for IBD are urgently needed. Hydrogen sulfide (H2S) is an endogenous gasotransmitter and plays an important role in inflammation. To date, H2S-releasing agents are viewed as potential anti-inflammatory drugs. The slow-releasing H2S donor 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), known as a potent therapeutic with chemopreventive and cytoprotective properties, has received attention recently. Here, we reported its anti-inflammatory effects on dextran sodium sulfate (DSS)-induced acute (7 days) and chronic (30 days) colitis. We found that ADT-OH effectively reduced the DSS-colitis clinical score and reversed the inflammation-induced shortening of colon length. Moreover, ADT-OH reduced intestinal inflammation by suppressing the nuclear factor kappa-B pathway. In vivo and in vitro results showed that ADT-OH decreased intestinal permeability by increasing the expression of zonula occludens-1 and occludin and blocking increases in myosin II regulatory light chain phosphorylation and epithelial myosin light chain kinase protein expression levels. In addition, ADT-OH restored intestinal microbiota dysbiosis characterized by the significantly increased abundance of Muribaculaceae and Alistipes and markedly decreased abundance of Helicobacter, Mucispirillum, Parasutterella, and Desulfovibrio. Transplanting ADT-OH-modulated microbiota can alleviate DSS-induced colitis and negatively regulate the expression of local and systemic proinflammatory cytokines. Collectively, ADT-OH is safe without any short-term (5 days) or long-term (30 days) toxicological adverse effects and can be used as an alternative therapeutic agent for IBD treatment.
Humans
;
Mice
;
Animals
;
Gastrointestinal Microbiome
;
Intestinal Barrier Function
;
Mice, Inbred C57BL
;
Colitis/metabolism*
;
Inflammatory Bowel Diseases/drug therapy*
;
Inflammation
;
Anti-Inflammatory Agents/pharmacology*
;
Disease Models, Animal
8.Oral administration of artemisinin nanospheres alleviates inflammation in mice with spontaneous ulcerative colitis.
Xiaolei ZHU ; Tingzan LI ; Zhitan CHEN
Chinese Journal of Cellular and Molecular Immunology 2023;39(9):787-792
Objective To investigate the anti-inflammatory effect of artemisinin (ART) encapsulated by β-lactoglobulin (BLG) nanoparticles on Winnie spontaneous ulcerative colitis mouse model. Methods BLG-ART nanoparticles were prepared and their effects on the solubility and stability of ART were evaluated. A mouse model of colitis induced by dextran sulfate sodium (DSS) was used to compare the therapeutic effects of artemisinin (ART) administered by direct gavage and artemisinin encapsulated by β-lactoglobulin nanoparticles (BLG-ART) administered by gavage. Winnie mice were randomly divided into blank group, ART group and BLG-ART group. Mice in the ART group were given 50 mg/kg ART by gavage; mice in the BLG-ART group were given the same dose of BLG-ART nanoparticle PBS dispersion by gavage; mice in the blank group were given the same amount of PBS by gavage, for 16 days. The body mass and disease activity index (DAI) of each group of mice were measured. HE staining was used to observe the pathological changes of mouse intestinal tissue, and real-time quantitative PCR was used to detect the mRNA expression levels of TNF-α, interleukin 1β (IL-1β), IL-10 and IL-17 in mouse colon tissue. Results Compared with the ART group and the blank group, the body mass of the BLG-ART group increased and the DAI decreased after 16-day treatment; the crypt structure of the proximal and distal colon regions of the mice recovered; goblet cell loss decreased; neutrophil infiltration decreased and the mRNA expression levels of pro-inflammatory and anti-inflammatory cytokines were significantly down-regulated. Conclusion ART-BLG can alleviate intestinal inflammation in spontaneous ulcerative colitis mice.
Animals
;
Mice
;
Colitis, Ulcerative/drug therapy*
;
Nanospheres
;
Inflammation
;
Administration, Oral
;
Artemisinins
;
Disease Models, Animal
;
RNA, Messenger
9.Mare's milk attenuates sodium dextran sulfate induced inflammation in mouse ulcerative colitis.
Yun WU ; Shuang WANG ; Dengqimuge AO ; Damasiren BA ; Linqiqige XI ; Ganqiqige CA ; Qin SI
Chinese Journal of Cellular and Molecular Immunology 2023;39(12):1057-1062
Objective To investigate the immunomodulatory effect of mare's milk on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice. Methods Kunming mice were randomly divided into a blank group(0.8 mL/day saline by gavage) and a DSS modeling group. After modeling, the DSS modeling group was further divided into a control group (0.8 mL/day saline), a salazosulfapyridine (SASP) treated group(430 mg/(kg.d)) and a mare's milk group(0.8 mL/day), with 16 mice in each group. After 10 days of gavage administration, HE staining was performed to observe colonic inflammation, and the disease activity index (DAI) and colonic mucosal damage index (CMDI) were scored. ELISA was used to determine the levels of interleukin 1β (IL-1β), IL-6, and IL-10 in mouse colonic tissues, and flow cytometry was used to detect the percentages of CD4+ and CD8+ T lymphocytes in peripheral blood. Results Compared to the blank group, all indexes in mice of the control group indicated that DSS successfully induced UC. Compared to the control group, colon shortening in UC mice was attenuated in the mare's milk group; inflammation and ulcer formation in colonic tissues were inhibited; DAI and CMDI scores were lowere; IL-1β and IL-6 levels in mouse colonic tissues were significantly reduced; IL-10 levels were increased and the CD4+/CD8+ T cell ratio was reduced. Conclusion Mare's milk can inhibit the inflammation of DSS-induced UC mice through immune regulation.
Mice
;
Animals
;
Female
;
Horses
;
Colitis, Ulcerative/drug therapy*
;
Interleukin-10
;
Dextran Sulfate
;
Interleukin-6
;
Milk
;
Signal Transduction
;
Disease Models, Animal
;
Inflammation
;
Colon
10.Platycodon grandiflorus polysaccharide regulates colonic immunity through mesenteric lymphatic circulation to attenuate ulcerative colitis.
Yang LIU ; Yahui DONG ; Wei SHEN ; Jiahui DU ; Quanwei SUN ; Ye YANG ; Dengke YIN
Chinese Journal of Natural Medicines (English Ed.) 2023;21(4):263-278
Platycodon grandiflorus polysaccharide (PGP) is one of the main components of P. grandiflorus, but the mechanism of its anti-inflammatory effect has not been fully elucidated. The aim of this study was to evaluate the therapeutic effect of PGP on mice with dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) and explore the underlying mechanisms. The results showed that PGP treatment inhibited the weight loss of DSS-induced UC mice, increased colon length, and reduced DAI, spleen index, and pathological damage within the colon. PGP also reduced the levels of pro-inflammatory cytokines and inhibited the enhancement of oxidative stress and MPO activity. Meanwhile, PGP restored the levels of Th1, Th2, Th17, and Treg cell-related cytokines and transcription factors in the colon to regulate colonic immunity. Further studies revealed that PGP regulated the balance of colonic immune cells through mesenteric lymphatic circulation. Taken together, PGP exerts anti-inflammatory and anti-oxidant effect and regulates colonic immunity to attenuate DSS-induced UC through mesenteric lymphatic circulation.
Animals
;
Mice
;
Colitis, Ulcerative/drug therapy*
;
Platycodon
;
Colon/pathology*
;
Cytokines
;
Anti-Inflammatory Agents/therapeutic use*
;
Polysaccharides/therapeutic use*
;
Dextran Sulfate
;
Disease Models, Animal
;
Colitis/chemically induced*
;
Mice, Inbred C57BL

Result Analysis
Print
Save
E-mail