1.Mechanism of tryptanthrin in treatment of ulcerative colitis in mice based on serum metabolomics.
Jie ZHU ; Bao-Long HOU ; Wen CHENG ; Ting WANG ; Zheng WANG ; Yan-Ni LIANG
China Journal of Chinese Materia Medica 2023;48(8):2193-2202
This study aims to explore the effect of tryptanthrin on potential metabolic biomarkers in the serum of mice with ulcerative colitis(UC) induced by dextran sulfate sodium(DSS) based on liquid chromatography-mass spectrometry(LC-MS) and predict the related metabolic pathways. C57BL/6 mice were randomly assigned into a tryptanthrin group, a sulfasalazine group, a control group, and a model group. The mouse model of UC was established by free drinking of 3% DSS solution for 11 days, and corresponding drugs were adminsitrated at the same time. The signs of mice were observed and the disease activity index(DAI) score was recorded from the first day. Colon tissue samples were collected after the experiment and observed by hematoxylin-eosin(HE) staining. The levels of interleukin-4(IL-4), interleukin-10(IL-10), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), and interleukin-8(IL-8) in the serum were measured by enzyme linked immunosorbent assay(ELISA). The serum samples were collected from 6 mice in each group for widely targeted metabolomics. The metabolic pathways were enriched by MetaboAnalyst 5.0. The results showed that compared with the model group, tryptanthrin treatment decreased the DAI score(P<0.05), alleviated the injury of the colon tissue and the infiltration of inflammatory cells, lowered the levels of proinflammatory cytokines, and elevated the levels of anti-inflammatory cytokines in the serum. The metabolomic analysis revealed 28 differential metabolites which were involved in 3 metabolic pathways including purine metabolism, arachidonic acid metabolism, and tryptophan metabolism. Tryptanthrin may restore the metabolism of the mice with UC induced by DSS to the normal level by regulating the purine metabolism, arachidonic acid metabolism, and tryptophan metabolism. This study employed metabolomics to analyze the mechanism of tryptanthrin in the treatment of UC, providing an experimental basis for the utilization and development of tryptanthrin.
Mice
;
Animals
;
Colitis, Ulcerative/drug therapy*
;
Tryptophan
;
Arachidonic Acid/metabolism*
;
Mice, Inbred C57BL
;
Colon
;
Cytokines/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Metabolomics
;
Purines/therapeutic use*
;
Dextran Sulfate/metabolism*
;
Disease Models, Animal
;
Colitis/chemically induced*
2.Therapeutic effect of ursodeoxycholic acid-berberine supramolecular nanoparticles on ulcerative colitis based on supramolecular system induced by weak bond.
Shan GAO ; Feng GAO ; Jing-Wei KONG ; Zhi-Jia WANG ; Hao-Cheng ZHENG ; Xin-Qi JIANG ; Shu-Jing XU ; Shan-Lan LI ; Ming-Jun LU ; Zi-Qi DAI ; Fu-Hao CHU ; Bing XU ; Hai-Min LEI
China Journal of Chinese Materia Medica 2023;48(10):2739-2748
Ulcerative colitis(UC) is a recurrent, intractable inflammatory bowel disease. Coptidis Rhizoma and Bovis Calculus, serving as heat-clearing and toxin-removing drugs, have long been used in the treatment of UC. Berberine(BBR) and ursodeoxycholic acid(UDCA), the main active components of Coptidis Rhizoma and Bovis Calculus, respectively, were employed to obtain UDCA-BBR supramolecular nanoparticles by stimulated co-decocting process for enhancing the therapeutic effect on UC. As revealed by the characterization of supramolecular nanoparticles by field emission scanning electron microscopy(FE-SEM) and dynamic light scattering(DLS), the supramolecular nanoparticles were tetrahedral nanoparticles with an average particle size of 180 nm. The molecular structure was described by ultraviolet spectroscopy, fluorescence spectroscopy, infrared spectroscopy, high-resolution mass spectrometry, and hydrogen-nuclear magnetic resonance(H-NMR) spectroscopy. The results showed that the formation of the supramolecular nano-particle was attributed to the mutual electrostatic attraction and hydrophobic interaction between BBR and UDCA. Additionally, supramolecular nanoparticles were also characterized by sustained release and pH sensitivity. The acute UC model was induced by dextran sulfate sodium(DSS) in mice. It was found that supramolecular nanoparticles could effectively improve body mass reduction and colon shortening in mice with UC(P<0.001) and decrease disease activity index(DAI)(P<0.01). There were statistically significant differences between the supramolecular nanoparticles group and the mechanical mixture group(P<0.001, P<0.05). Enzyme-linked immunosorbent assay(ELISA) was used to detect the serum levels of tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6), and the results showed that supramolecular nanoparticles could reduce serum TNF-α and IL-6 levels(P<0.001) and exhibited an obvious difference with the mechanical mixture group(P<0.01, P<0.05). Flow cytometry indicated that supramolecular nanoparticles could reduce the recruitment of neutrophils in the lamina propria of the colon(P<0.05), which was significantly different from the mechanical mixture group(P<0.05). These findings suggested that as compared with the mechanical mixture, the supramolecular nanoparticles could effectively improve the symptoms of acute UC in mice. The study provides a new research idea for the poor absorption of small molecules and the unsatisfactory therapeutic effect of traditional Chinese medicine and lays a foundation for the research on the nano-drug delivery system of traditional Chinese medicine.
Animals
;
Mice
;
Colitis, Ulcerative/drug therapy*
;
Ursodeoxycholic Acid/adverse effects*
;
Berberine/pharmacology*
;
Interleukin-6
;
Tumor Necrosis Factor-alpha/pharmacology*
;
Drugs, Chinese Herbal/pharmacology*
;
Colon
;
Nanoparticles
;
Dextran Sulfate/adverse effects*
;
Disease Models, Animal
;
Colitis/chemically induced*
4.Platycodon grandiflorus polysaccharide regulates colonic immunity through mesenteric lymphatic circulation to attenuate ulcerative colitis.
Yang LIU ; Yahui DONG ; Wei SHEN ; Jiahui DU ; Quanwei SUN ; Ye YANG ; Dengke YIN
Chinese Journal of Natural Medicines (English Ed.) 2023;21(4):263-278
Platycodon grandiflorus polysaccharide (PGP) is one of the main components of P. grandiflorus, but the mechanism of its anti-inflammatory effect has not been fully elucidated. The aim of this study was to evaluate the therapeutic effect of PGP on mice with dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) and explore the underlying mechanisms. The results showed that PGP treatment inhibited the weight loss of DSS-induced UC mice, increased colon length, and reduced DAI, spleen index, and pathological damage within the colon. PGP also reduced the levels of pro-inflammatory cytokines and inhibited the enhancement of oxidative stress and MPO activity. Meanwhile, PGP restored the levels of Th1, Th2, Th17, and Treg cell-related cytokines and transcription factors in the colon to regulate colonic immunity. Further studies revealed that PGP regulated the balance of colonic immune cells through mesenteric lymphatic circulation. Taken together, PGP exerts anti-inflammatory and anti-oxidant effect and regulates colonic immunity to attenuate DSS-induced UC through mesenteric lymphatic circulation.
Animals
;
Mice
;
Colitis, Ulcerative/drug therapy*
;
Platycodon
;
Colon/pathology*
;
Cytokines
;
Anti-Inflammatory Agents/therapeutic use*
;
Polysaccharides/therapeutic use*
;
Dextran Sulfate
;
Disease Models, Animal
;
Colitis/chemically induced*
;
Mice, Inbred C57BL
5.Norisoboldine, a natural aryl hydrocarbon receptor agonist, alleviates TNBS-induced colitis in mice, by inhibiting the activation of NLRP3 inflammasome.
Qi LV ; Kai WANG ; Si-Miao QIAO ; Yue DAI ; Zhi-Feng WEI
Chinese Journal of Natural Medicines (English Ed.) 2018;16(3):161-174
Although the etiology of inflammatory bowel disease is still uncertain, increasing evidence indicates that the excessive activation of NLRP3 inflammasome plays a major role. Norisoboldine (NOR), an alkaloid isolated from Radix Linderae, has previously been demonstrated to inhibit inflammation and IL-1β production. The present study was to examine the effect of NOR on colitis and the underlying mechanism related to NLRP3 inflammasome activation. Our results showed that NOR alleviated colitis symptom in mice induced by 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). Moreover, it significantly reduced expressions of cleaved IL-1β, NLRP3 and cleaved Caspase-1 but not ASC in colons of mice. In THP-1 cells, NOR suppressed the expressions of NLRP3, cleaved Caspase-1 and cleaved IL-1β but not ASC induced by lipopolysaccharide (LPS) and adenosine triphosphate (ATP). Furthermore, NOR could activate aryl hydrocarbon receptor (AhR) in THP-1 cells, inducing CYP1A1 mRNA expression, and promoting dissociation of AhR/HSP90 complexes, association of AhR and ARNT, AhR nuclear translocation, XRE reporter activity and binding activity of AhR/ARNT/XRE. Both siAhR and α-naphthoflavone (α-NF) markedly diminished the inhibition of NOR on NLRP3 inflammasome activation. In addition, NOR elevated Nrf2 level and reduced ROS level in LPS- and ATP-stimulated THP-1 cells, which was reversed by either siAhR or α-NF treatment. Finally, correlations between activation of AhR and attenuation of colitis, inhibition of NLRP3 inflammasome activation and up-regulation of Nrf2 level in colons were validated in mice with TNBS-induced colitis. Taken together, NOR ameliorated TNBS-induced colitis in mice through inhibiting NLRP3 inflammasome activation via regulating AhR/Nrf2/ROS signaling pathway.
Alkaloids
;
administration & dosage
;
Animals
;
Colitis
;
chemically induced
;
drug therapy
;
genetics
;
immunology
;
Drugs, Chinese Herbal
;
administration & dosage
;
Humans
;
Inflammasomes
;
drug effects
;
immunology
;
Interleukin-1beta
;
genetics
;
immunology
;
Lindera
;
chemistry
;
Male
;
Mice
;
Mice, Inbred BALB C
;
NF-kappa B
;
genetics
;
immunology
;
Receptors, Aryl Hydrocarbon
;
agonists
;
genetics
;
metabolism
;
Trinitrobenzenesulfonic Acid
;
adverse effects
6.Effect of total triterpenoids of Chaenomeles speciosa on PPARγ/SIRT1/NF-κBp65 signaling pathway and intestinal mucosal barrier of ulcerative colitis induced by DSS in mice.
Xing-Jun XIONG ; Xiao-Mei LI ; Yu-Min HE ; Xiao-Qin LI ; Hai-Yan XU ; Min-Lu FENG ; Hai-Bo HE ; Ji-Hong ZHANG ; Shu ZHU ; KOMATSU KATSUKO ; Kun ZOU
China Journal of Chinese Materia Medica 2018;43(21):4295-4304
To observe the effect of total triterpenoids of Chaenomeles speciosa on PPARγ/SIRT1/NF-κBp65 signaling pathway and intestinal mucosal barrier of ulcerative colitis induced by dextran sulfate sodium (DSS) in mice, C57BL/6 mice were randomly divided into normal group, model group, total triterpenoids of C. speciosa (50, 100 mg·kg⁻¹) groups and sulfasalazine (250 mg·kg⁻¹) group. The ulcerative colitis (UC) model was induced by orally administering 2.5% DSS to the experimental mice, and the corresponding drugs were given to each group 3 days before the administration with 2.5% DSS. The normal group and the model group were given the equal volume of 0.5% carboxymethyl cellulose sodium solution by gavage continuously for 10 days, q.d. The general conditions of the mice were observed on a daily basis, and the disease activity index (DAI) score was recorded. On the 10th day after the treatment, mice were put to death, the contents of TNF-α, IL-1β, IL-6, IFN-γ, IL-4 and IL-10 in the blood were detected, colon length was measured, colon mucosa damage index (CMDI) score was calculated, and MPO activity detection and histomorphology analysis were conducted. Real-time PCR was applied to detect the mRNA expressions of E-cadherin, occluding,MUC2 and TFF3; the protein expressions of SIRT1, IKKβ, p-IKKβ, IκBα, p-IκBα and cytosol and nucleus PPARγ, NF-κBp65 in intestinal tissue were detected by western blot. The results indicated that total triterpenoids of C. speciosa (50, 100 mg·kg⁻¹) could significantly improve the general conditions of UC mice, reduce the DAI, CMDI and histopathological scores, increase the colon length, reduce the colonic mucosa ulcers, erosion and inflammatory infiltration, restore the normal intestinal mucosal barrier function, reduce the contents of TNF-α, IL-1β, IL-6, IFN-γ, increase the contents of IL-4 and IL-10 in the blood, inhibit MPO activity in colon tissue, up-regulate the mRNA expressions of E-cadherin, occludin, MUC2 and TFF3 in colon tissue, down-regulate the protein expressions of cytosol PPARγ, tissue p-IKKβ, p-IκBα and nucleus NF-κBp65 in the colon tissue, decrease the p-IKKβ/IKKβ and p-IκBα/IκBα ratios, up-regulate the protein expressions of nucleus PPARγ, tissue SIRT1 and cytosol NF-κBp65 (<0.05 or <0.01, respectively), with a dose-effect relationship between the total triterpenoids of C. speciosa treated groups. These findings suggested that total triterpenoids of C. speciosa had a significantly therapeutic effect on UC mice induced by DSS, its mechanism might be related to the regulation of PPARγ/SIRT1/NF-κBp65 signaling pathway, the inhibition of pro-inflammatory factor formation and the up-regulation of protein expression of protective factors.
Animals
;
Colitis, Ulcerative
;
chemically induced
;
drug therapy
;
Colon
;
drug effects
;
Dextran Sulfate
;
Disease Models, Animal
;
Intestinal Mucosa
;
drug effects
;
Mice
;
Mice, Inbred C57BL
;
PPAR gamma
;
metabolism
;
Random Allocation
;
Rosaceae
;
chemistry
;
Signal Transduction
;
drug effects
;
Sirtuin 1
;
metabolism
;
Transcription Factor RelA
;
metabolism
7.Efficacy analysis of fecal microbiota transplantation in the treatment of 406 cases with gastrointestinal disorders.
Ning LI ; Hongliang TIAN ; Chunlian MA ; Chao DING ; Xiaolong GE ; Lili GU ; Xuelei ZHANG ; Bo YANG ; Yue HUA ; Yifan ZHU ; Yan ZHOU
Chinese Journal of Gastrointestinal Surgery 2017;20(1):40-46
OBJECTIVETo evaluate the efficacy and safety of fecal microbiota transplantation (FMT) for gastrointestinal disorders.
METHODSRetrospective analysis of the clinical data of 406 patients who underwent FMT from May 2014 to April 2016 in the Intestinal Microenvironment Treatment Centre of Nanjing General Hospital was performed, including patients with constipation(276 cases), recurrent Clostridium Difficile infection (RCDI, 61 cases), ulcerative colitis(44 cases), irritable bowel syndrome (15 cases) and Crohn's disease(10 cases). Donors were completely unrelated, 18- to 50-year-old non-pregnant healthy adult, with healthy lifestyle and habits, without taking antibiotics, probiotics and other probiotics history within 3 months. There were three routes of FMT administration: patients received 6 days of frozen FMT by nasointestinal tube placed in the proximal jejunum under gastroscope (319 cases); patients received capsules FMT per day for 6 consecutive days (46 cases) or once 600 ml of treated fecal liquid infusion into colon and terminal ileum by colonoscopy(41 cases).
RESULTSClinical cure rate and improvement rate of different diseases receiving FMT were respectively as follows: RCDI was 85.2% (52/61) and 95.1%(58/61); constipation was 40.2%(111/276) and 67.4%(186/276); ulcerative colitis was 34.1%(15/44) and 68.2% (30/44); irritable bowel syndrome was 46.7% (7/15) and 73.3% (11/15) and Crohn disease was 30.0%(3/10) and 60.0%(6/10). RCDI had the best efficacy among these diseases(P<0.01). There was no significant difference between the three routes of FMT administration(P=0.829). The clinical cure rate and improvement rate of different routes were 43.3%(138/319) and 58.6% (187/319) respectively in nasogastric transplantation group, 41.5%(17/41) and 61.0%(25/41) in colonoscopy group, 37.0%(17/46) and 63.0% (29/46) in the capsule transplantation group. There was no serious adverse event during the follow-up. The most common side effects were respiratory discomfort (27.3%, 87/319) and increased venting (51.7%, 165/319) in nasogastric transplantation group. Diarrhea was the most common complication in colonoscopy group (36.6%, 15/41). The main symptoms were increased venting (50.0%, 23/46) and nausea(34.8%, 16/46) in oral capsule group. Side effect symptoms disappeared after the withdraw of nasogastric tube, or at the end of treatment, or during hospitalization for 1-3 days.
CONCLUSIONSFMT is effective for many gastrointestinal disorders. No significant adverse event is found, while the associated mechanism should be further explored.
Adult ; Clostridium Infections ; drug therapy ; Clostridium difficile ; drug effects ; Colitis, Ulcerative ; drug therapy ; Colonoscopy ; adverse effects ; methods ; Constipation ; drug therapy ; Crohn Disease ; drug therapy ; Diarrhea ; chemically induced ; Fecal Microbiota Transplantation ; methods ; statistics & numerical data ; Female ; Flatulence ; chemically induced ; Gastrointestinal Diseases ; drug therapy ; Gastroscopy ; methods ; Humans ; Intubation, Gastrointestinal ; adverse effects ; methods ; Irritable Bowel Syndrome ; drug therapy ; Male ; Middle Aged ; Nausea ; chemically induced ; Retrospective Studies ; Treatment Outcome
8.Oral administration of red ginseng powder fermented with probiotic alleviates the severity of dextran-sulfate sodium-induced colitis in a mouse model.
Sun-Hee JANG ; Jisang PARK ; Sae-Hae KIM ; Kyung-Min CHOI ; Eun-Sil KO ; Jeong-Dan CHA ; Young-Ran LEE ; Hyonseok JANG ; Yong-Suk JANG
Chinese Journal of Natural Medicines (English Ed.) 2017;15(3):192-201
Red ginseng is a well-known alternative medicine with anti-inflammatory activity. It exerts pharmacological effects through the transformation of saponin into metabolites by intestinal microbiota. Given that intestinal microflora vary among individuals, the pharmacological effects of red ginseng likely vary among individuals. In order to produce homogeneously effective red ginseng, we prepared probiotic-fermented red ginseng and evaluated its activity using a dextran sulfate sodium (DSS)-induced colitis model in mice. Initial analysis of intestinal damage indicated that the administration of probiotic-fermented red ginseng significantly decreased the severity of colitis, compared with the control and the activity was higher than that induced by oral administration of ginseng powder or probiotics only. Subsequent analysis of the levels of serum IL-6 and TNF-α, inflammatory biomarkers that are increased at the initiation stage of colitis, were significantly decreased in probiotic-fermented red ginseng-treated groups in comparison to the control group. The levels of inflammatory cytokines and mRNAs for inflammatory factors in colorectal tissues were also significantly decreased in probiotic-fermented red ginseng-treated groups. Collectively, oral administration of probiotic-fermented red ginseng reduced the severity of colitis in a mouse model, suggesting that it can be used as a uniformly effective red ginseng product.
Administration, Oral
;
Animals
;
Colitis
;
chemically induced
;
drug therapy
;
immunology
;
Colon
;
drug effects
;
immunology
;
Dextran Sulfate
;
adverse effects
;
Disease Models, Animal
;
Female
;
Fermentation
;
Humans
;
Interleukin-6
;
immunology
;
Lactobacillus plantarum
;
metabolism
;
Mice
;
Mice, Inbred BALB C
;
Panax
;
chemistry
;
metabolism
;
microbiology
;
Plant Extracts
;
administration & dosage
;
chemistry
;
metabolism
;
Powders
;
administration & dosage
;
metabolism
;
Probiotics
;
metabolism
;
Tumor Necrosis Factor-alpha
;
immunology
9.Apocynin relieves inflammation in dextran sulfate sodium-induced ulcerative colitis mice: the role of NOXs-ROS-p38MAPK pathway.
Dan-Dan WEI ; Xu-Hong LIN ; Hui-Chao WANG ; Bin WANG ; Chun-Yang BAI ; Ya-Qiang WANG ; Guo-En LI ; Xue-Qun REN
Acta Physiologica Sinica 2015;67(1):74-82
The study is aimed to explore the molecular mechanism of the treatment of apocynin in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice. 5% DSS was used to mimic the UC model, and 2% apocynin was applied to treat the UC mice. HE staining was used for histopathological evaluation. Chemiluminescence technique was used to measure reactive oxygen species (ROS) production, and the rate of consumption of NADPH inhibited by DPI was detected to determine the NADPH oxidases (NOXs) activity. Western blot was applied to identify the level of p38MAPK phosphorylation, Griess reaction assay to analyze NO production, immunoenzymatic method to determine prostaglandin E2 (PGE2) production, real time RT-PCR and Western blot to identify the expression of iNOS and COX2, and enzyme linked immunosorbent assay to detect inflammatory cytokines TNF-α, IL-6, IFN-γ, IL-1β. Rat neutrophils were separated, and then ROS production, NOXs activity, NO and PGE2 production, NOX1 and p-p38MAPK expression were detected. Compared with the UC group, apocynin decreased ROS over-production and NOXs activity (P < 0.01), reduced p38MAPK phosphorylation, inhibited NO, PGE2 and cytokines production (P < 0.01). Apocynin also decreased NOXs activity and ROS over-production (P < 0.01), inhibited p38MAPK phosphorylation and NOX1 expression, and reduced NO and PGE2 production (P < 0.01) in separated neutrophils from UC mice. Therefore, apocynin could relieve inflammation in DSS-induced UC mice through inhibiting NOXs-ROS-p38MAPK signal pathway, and neutrophils play an important role.
Acetophenones
;
pharmacology
;
Animals
;
Colitis, Ulcerative
;
chemically induced
;
drug therapy
;
Cytokines
;
metabolism
;
Dextran Sulfate
;
Inflammation
;
drug therapy
;
MAP Kinase Signaling System
;
Mice
;
NADH, NADPH Oxidoreductases
;
metabolism
;
Neutrophils
;
metabolism
;
Rats
;
Reactive Oxygen Species
;
metabolism
;
p38 Mitogen-Activated Protein Kinases
;
metabolism
10.The Risk of Tuberculosis in Korean Patients with Inflammatory Bowel Disease Receiving Tumor Necrosis Factor-alpha Blockers.
Ja Min BYUN ; Chang Kyun LEE ; Sang Youl RHEE ; Hyo Jong KIM ; Jung Wook KIM ; Jae Jun SHIM ; Jae Young JANG
Journal of Korean Medical Science 2015;30(2):173-179
The aims of this study were to assess the risk of tuberculosis (TB) and the status of latent tuberculosis infection (LTBI) in Korean patients with inflammatory bowel disease (IBD) receiving tumor necrosis factor (TNF)-alpha blockers. We reviewed medical records of 525 Korean IBD patients (365 TNF-alpha blocker naive and 160 TNF-alpha blocker exposed) between January 2001 and December 2013. The crude incidence of TB was significantly higher in IBD patients receiving TNF-alpha blockers compared to TNF-alpha-blocker-naive patients (3.1% vs. 0.3%, P=0.011). The mean incidence of TB per 1,000 patient-years was 1.84 for the overall IBD population, 4.89 for TNF-alpha blocker users, and 0.45 for TNF-alpha-blocker-naive patients. The adjusted risk ratio of TB in IBD patients receiving TNF-alpha blocker was 11.7 (95% confidence interval, 1.36-101.3). Pulmonary TB was prevalent in patients treated with TNF-alpha blockers (80.0%, 4/5). LTBI was diagnosed in 17 (10.6%) patients, and none of the 17 LTBI patients experienced reactivation of TB during treatment with TNF-alpha blockers. Treatment with TNF-alpha blockers significantly increased the risk of TB in IBD patients in Korea. De novo pulmonary TB infection was more prevalent than reactivation of LTBI, suggesting an urgent need for specific recommendations regarding TB monitoring during TNF-alpha blocker therapy.
6-Mercaptopurine/adverse effects/analogs & derivatives/therapeutic use
;
Adult
;
Anti-Inflammatory Agents, Non-Steroidal/adverse effects/therapeutic use
;
Antibodies, Monoclonal/adverse effects/therapeutic use
;
Cohort Studies
;
Colitis, Ulcerative/*drug therapy
;
Crohn Disease/*drug therapy
;
Female
;
Humans
;
Latent Tuberculosis/chemically induced/diagnosis/*epidemiology
;
Male
;
Mycobacterium tuberculosis/isolation & purification
;
Republic of Korea
;
Retrospective Studies
;
Tuberculosis, Pulmonary/chemically induced/diagnosis/*epidemiology
;
Tumor Necrosis Factor-alpha/*antagonists & inhibitors

Result Analysis
Print
Save
E-mail