1.Effect and mechanism of Bovis Calculus on ulcerative colitis by inhibiting IL-17/IL-17RA/Act1 signaling pathway.
Jian-Mei YUAN ; Dan-Ni LU ; Jia-Jun WANG ; Zhuo XU ; Yong LI ; Mi-Hong REN ; Jin-Xiu LI ; Dao-Yin GONG ; Jian WANG
China Journal of Chinese Materia Medica 2023;48(9):2500-2511
		                        		
		                        			
		                        			This study aimed to elucidate the effect and underlying mechanism of Bovis Calculus in the treatment of ulcerative colitis(UC) through network pharmacological prediction and animal experimental verification. Databases such as BATMAN-TCM were used to mine the potential targets of Bovis Calculus against UC, and the pathway enrichment analysis was conducted. Seventy healthy C57BL/6J mice were randomly divided into a blank group, a model group, a solvent model(2% polysorbate 80) group, a salazosulfapyridine(SASP, 0.40 g·kg~(-1)) group, and high-, medium-, and low-dose Bovis Calculus Sativus(BCS, 0.20, 0.10, and 0.05 g·kg~(-1)) groups according to the body weight. The UC model was established in mice by drinking 3% dextran sulfate sodium(DSS) solution for 7 days. The mice in the groups with drug intervention received corresponding drugs for 3 days before modeling by gavage, and continued to take drugs for 7 days while modeling(continuous administration for 10 days). During the experiment, the body weight of mice was observed, and the disease activity index(DAI) score was recorded. After 7 days of modeling, the colon length was mea-sured, and the pathological changes in colon tissues were observed by hematoxylin-eosin(HE) staining. The levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), and interleukin-17(IL-17) in colon tissues of mice were detected by enzyme-linked immunosorbent assay(ELISA). The mRNA expression of IL-17, IL-17RA, Act1, TRAF2, TRAF5, TNF-α, IL-6, IL-1β, CXCL1, CXCL2, and CXCL10 was evaluated by real-time polymerase chain reaction(RT-PCR). The protein expression of IL-17, IL-17RA, Act1, p-p38 MAPK, and p-ERK1/2 was investigated by Western blot. The results of network pharmacological prediction showed that Bovis Calculus might play a therapeutic role through the IL-17 signaling pathway and the TNF signaling pathway. As revealed by the results of animal experiments, on the 10th day of drug administration, compared with the solvent model group, all the BCS groups showed significantly increased body weight, decreased DAI score, increased colon length, improved pathological damage of colon mucosa, and significantly inhibited expression of TNF-α,IL-6,IL-1β, and IL-17 in colon tissues. The high-dose BCS(0.20 g·kg~(-1)) could significantly reduce the mRNA expression levels of IL-17, Act1, TRAF2, TRAF5, TNF-α, IL-6, IL-1β, CXCL1, and CXCL2 in colon tissues of UC model mice, tend to down-regulate mRNA expression levels of IL-17RA and CXCL10, significantly inhibit the protein expression of IL-17RA,Act1,and p-ERK1/2, and tend to decrease the protein expression of IL-17 and p-p38 MAPK. This study, for the first time from the whole-organ-tissue-molecular level, reveals that BCS may reduce the expression of pro-inflammatory cytokines and chemokines by inhibiting the IL-17/IL-17RA/Act1 signaling pathway, thereby improving the inflammatory injury of colon tissues in DSS-induced UC mice and exerting the effect of clearing heat and removing toxins.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Colitis, Ulcerative/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Interleukin-6/metabolism*
		                        			;
		                        		
		                        			Interleukin-17/pharmacology*
		                        			;
		                        		
		                        			TNF Receptor-Associated Factor 2/pharmacology*
		                        			;
		                        		
		                        			TNF Receptor-Associated Factor 5/metabolism*
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Colon
		                        			;
		                        		
		                        			p38 Mitogen-Activated Protein Kinases/metabolism*
		                        			;
		                        		
		                        			RNA, Messenger/metabolism*
		                        			;
		                        		
		                        			Dextran Sulfate/metabolism*
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			
		                        		
		                        	
2.Mechanism of tryptanthrin in treatment of ulcerative colitis in mice based on serum metabolomics.
Jie ZHU ; Bao-Long HOU ; Wen CHENG ; Ting WANG ; Zheng WANG ; Yan-Ni LIANG
China Journal of Chinese Materia Medica 2023;48(8):2193-2202
		                        		
		                        			
		                        			This study aims to explore the effect of tryptanthrin on potential metabolic biomarkers in the serum of mice with ulcerative colitis(UC) induced by dextran sulfate sodium(DSS) based on liquid chromatography-mass spectrometry(LC-MS) and predict the related metabolic pathways. C57BL/6 mice were randomly assigned into a tryptanthrin group, a sulfasalazine group, a control group, and a model group. The mouse model of UC was established by free drinking of 3% DSS solution for 11 days, and corresponding drugs were adminsitrated at the same time. The signs of mice were observed and the disease activity index(DAI) score was recorded from the first day. Colon tissue samples were collected after the experiment and observed by hematoxylin-eosin(HE) staining. The levels of interleukin-4(IL-4), interleukin-10(IL-10), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), and interleukin-8(IL-8) in the serum were measured by enzyme linked immunosorbent assay(ELISA). The serum samples were collected from 6 mice in each group for widely targeted metabolomics. The metabolic pathways were enriched by MetaboAnalyst 5.0. The results showed that compared with the model group, tryptanthrin treatment decreased the DAI score(P<0.05), alleviated the injury of the colon tissue and the infiltration of inflammatory cells, lowered the levels of proinflammatory cytokines, and elevated the levels of anti-inflammatory cytokines in the serum. The metabolomic analysis revealed 28 differential metabolites which were involved in 3 metabolic pathways including purine metabolism, arachidonic acid metabolism, and tryptophan metabolism. Tryptanthrin may restore the metabolism of the mice with UC induced by DSS to the normal level by regulating the purine metabolism, arachidonic acid metabolism, and tryptophan metabolism. This study employed metabolomics to analyze the mechanism of tryptanthrin in the treatment of UC, providing an experimental basis for the utilization and development of tryptanthrin.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Colitis, Ulcerative/drug therapy*
		                        			;
		                        		
		                        			Tryptophan
		                        			;
		                        		
		                        			Arachidonic Acid/metabolism*
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Colon
		                        			;
		                        		
		                        			Cytokines/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Interleukin-6/metabolism*
		                        			;
		                        		
		                        			Metabolomics
		                        			;
		                        		
		                        			Purines/therapeutic use*
		                        			;
		                        		
		                        			Dextran Sulfate/metabolism*
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Colitis/chemically induced*
		                        			
		                        		
		                        	
3.Progress on Regulation of NLRP3 Inflammasome by Chinese Medicine in Treatment of Ulcerative Colitis.
Chinese journal of integrative medicine 2023;29(8):750-760
		                        		
		                        			
		                        			Ulcerative colitis (UC) is a chronic, non-specific intestinal disease that not only affects the quality of life of patients and their families but also increases the risk of colorectal cancer. The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome is an important component of inflammatory response system, and its activation induces an inflammatory cascade response that is involved in the development and progression of UC by releasing inflammatory cytokines, damaging intestinal epithelial cells, and disrupting the intestinal mucosal barrier. Chinese medicine (CM) plays a vital role in the prevention and treatment of UC and is able to regulate NLRP3 inflammasome. Many experimental studies on the regulation of NLRP3 inflammasome mediated by CM have been carried out, demonstrating that CM formulae with main effects of clearing heat, detoxifying toxicity, drying dampness, and activating blood circulation. Flavonoids and phenylpropanoids can effectively regulate NLRP3 inflammasome. Other active components of CM can interfere with the process of NLRP3 inflammasome assembly and activation, leading to a reduction in inflammation and UC symptoms. However, the reports are relatively scattered and lack systematic reviews. This paper reviews the latest findings regarding the NLRP3 inflammasome activation-related pathways associated with UC and the potential of CM in treating UC through modulation of NLRP3 inflammasome. The purpose of this review is to explore the possible pathological mechanisms of UC and suggest new directions for development of therapeutic tools.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Inflammasomes/metabolism*
		                        			;
		                        		
		                        			Colitis, Ulcerative/pathology*
		                        			;
		                        		
		                        			NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
		                        			;
		                        		
		                        			Medicine, Chinese Traditional
		                        			;
		                        		
		                        			Quality of Life
		                        			;
		                        		
		                        			Colitis
		                        			
		                        		
		                        	
4.Effects of Huangqin Tang on NLRP3/Caspase-1 pathway in mice model of ulcerative colitis.
Meng-Ru LIU ; Hui LI ; Lan-Fu WEI ; Xiao-Tong LIU ; Zhen-Tao AN ; Li-Mei GU ; Yao-Zhou TIAN
China Journal of Chinese Materia Medica 2023;48(1):226-233
		                        		
		                        			
		                        			The aim of this study was to explore the effects of Huangqin Tang(HQT) on the NLRP3/Caspase-1 signaling pathway in mice with DSS-induced ulcerative colitis(UC). C57BL/6J mice were randomly divided into a blank group, a model group(DSS group), and low-, medium-and high-dose HQT groups(HQT-L, HQT-M, and HQT-H), and western medicine mesalazine group(western medicine group). The UC model was induced in mice. Subsequently, the mice in the HQT-L, HQT-M, HQT-H groups, and the western medicine group were given low-, medium-, high-dose HQT, and mesalazine suspension by gavage, respectively, while those in the blank and DSS groups were given an equal volume of distilled water by gavage. After 10 days of administration, the body weight, DAI scores, and colonic histopathological score of mice in each group were determined. The levels of IL-6, IL-10, IL-1β, and TNF-α in serum were determined by ELISA. The mRNA expression of NLRP3 and Caspase-1 in colon tissues was determined by RT-qPCR. The protein expression of NLRP3 and Caspase-1 in colon tissues was detected by immunohistochemistry. The results showed that compared with the blank group, the DSS group showed decreased body weight of mice and increased DAI scores and intestinal histopathological score. Compared with the DSS group, the HQT groups and the western medicine group showed improved DAI scores, especially in the HQT-M, HQT-H, and the western medicine groups(P<0.05). The intestinal histopathological scores of the HQT groups and the western medicine group significantly decreased, especially in the HQT-M, HQT-H, and the western medicine groups(P<0.05). In addition, compared with the blank group, the DSS group showed elevated expression of NLRP3 and Caspase-1 in colon tissues, increased serum levels of IL-6, IL-1β, and TNF-α, and decreased IL-10 level. Compared with the DSS group, the HQT groups and the western medicine group displayed decreased expression of NLRP3 and Caspase-1 in colon tissues, reduced serum levels of IL-6, IL-1β, and TNF-α, and increased IL-10 level. The improvement was the most significant in the HQT-H group and the western medicine group(P<0.01). In conclusion, HQT may reduce the expression of NLRP3 and Caspase-1 in colon tissues, reduce the se-rum levels of IL-6, IL-1β, and TNF-α, and increase the expression of IL-10 by regulating the classic pyroptosis pathway of NLRP3/Caspase-1, thereby improving the symptoms of intestinal injury and inflammatory infiltration of intestinal mucosa in DSS mice to achieve its therapeutic effect.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Caspase 1/genetics*
		                        			;
		                        		
		                        			Colitis, Ulcerative/genetics*
		                        			;
		                        		
		                        			Colon
		                        			;
		                        		
		                        			Dextran Sulfate/adverse effects*
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Interleukin-10/genetics*
		                        			;
		                        		
		                        			Interleukin-6/genetics*
		                        			;
		                        		
		                        			Mesalamine/pharmacology*
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
		                        			;
		                        		
		                        			Scutellaria baicalensis/chemistry*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Drugs, Chinese Herbal/pharmacology*
		                        			
		                        		
		                        	
5.Mechanism of famous classical formula Huaihua Powder in treatment of ulcerative colitis based on metabonomics.
Li-Ying HAN ; Hao YU ; Tian-Jiao LI ; Shuai WANG ; Yong-Rui BAO ; Xian-Sheng MENG
China Journal of Chinese Materia Medica 2023;48(5):1300-1309
		                        		
		                        			
		                        			Ultra-high performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry(UHPLC-Q-TOF-MS) was employed in this study to observe the effect of Huaihua Powder on the serum metabolites of mice with ulcerative colitis and reveal the mechanism of Huaihua Powder in the treatment of ulcerative colitis. The mouse model of ulcerative colitis was established by dextran sodium sulfate salt(DSS). The therapeutic effect of Huaihua Powder on ulcerative colitis was preliminarily evaluated based on the disease activity index(DAI), colon appearance, colon tissue morphology, and the content of inflammatory cytokines such as tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), and interleukin-1β(IL-1β). UHPLC-Q-TOF-MS was employed to profile the endogenous metabolites of serum samples in blank control group, model group, and low-, medium-, and high-dose Huaihua Powder groups. Multivariate analyses such as principal component analysis(PCA), partial least squares discriminant analysis(PLS-DA), and orthogonal partial least squares discriminant analysis(OPLS-DA) were performed for pattern recognition. Potential biomarkers were screened by Mass Profiler Professional(MPP) B.14.00 with the thresholds of fold change≥2 and P<0.05. The metabolic pathways were enriched by MetaboAnalyst 5.0. The results showed that Huaihua Powder significantly improved the general state and colon tissue morphology of mice with ulcerative colitis, reduced DAI, and lowered the levels of TNF-α, IL-6, and IL-1β in serum. A total of 38 potential biomarkers were predicted to be related to the regulatory effect of Huaihua Powder, which were mainly involved in glycerophospholipid metabolism, glycine, serine, and threonine metabolism, mutual transformation of glucuronic acid, and glutathione metabolism. This study employed metabolomics to analyze the mechanism of Huaihua Powder in the treatment of ulcerative colitis, laying a foundation for the further research.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Colitis, Ulcerative/metabolism*
		                        			;
		                        		
		                        			Powders
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Interleukin-6/metabolism*
		                        			;
		                        		
		                        			Metabolomics
		                        			;
		                        		
		                        			Colon
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Biomarkers
		                        			;
		                        		
		                        			Dextran Sulfate/therapeutic use*
		                        			
		                        		
		                        	
6.Mechanism of Acupuncture and Moxibustion on Promoting Mucosal Healing in Ulcerative Colitis.
Han LI ; Xiao-Feng YE ; Yang-Shuai SU ; Wei HE ; Jian-Bin ZHANG ; Qi ZHANG ; Li-Bin ZHAN ; Xiang-Hong JING
Chinese journal of integrative medicine 2023;29(9):847-856
		                        		
		                        			
		                        			The latest guideline about ulcerative colitis (UC) clinical practice stresses that mucosal healing, rather than anti-inflammation, is the main target in UC clinical management. Current mucosal dysfunction mainly closely relates to the endoscopic intestinal wall (mechanical barrier) injury with the imbalance between intestinal epithelial cells (IECs) regeneration and death, as well as tight junction (TJ) dysfunction. It is suggested that biological barrier (gut microbiota), chemical barrier (mucus protein layer, MUC) and immune barrier (immune cells) all take part in the imbalance, leading to mechanical barrier injury. Lots of experimental studies reported that acupuncture and moxibustion on UC recovery by adjusting the gut microbiota, MUC and immune cells on multiple targets and pathways, which contributes to the balance of IEC regeneration and death, as well as TJ structure recovery in animals. Moreover, the validity and superiority of acupuncture and moxibustion were also demonstrated in clinic. This study aims to review the achievements of acupuncture and moxibustion on mucosal healing and analyse the underlying mechanisms.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Colitis, Ulcerative/metabolism*
		                        			;
		                        		
		                        			Moxibustion
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Acupuncture Therapy
		                        			;
		                        		
		                        			Acupuncture
		                        			
		                        		
		                        	
7.Probiotic mixture VSL#3 prevents ulcerative colitis-associated carcinogenesis in mice and cells by regulating the inflammatory and Wnt/β-catenin pathway.
Wenbin LI ; Yanan WANG ; Chunsaier WANG ; Hongying WANG ; Yiming MA ; Hong YANG ; Xinhua ZHAO ; Xiaomin HU ; John Y KAO ; Jiaming QIAN ; Chung OWYANG ; Jingnan LI
Chinese Medical Journal 2022;135(19):2357-2359
8.Experimental study on effects of berberine combined with 6-shogaol on intestinal inflammation and flora in mice with ulcerative colitis.
Hai-Liang WEI ; Jing-Tao LI ; Zhi-Guo CHEN ; Shu-Guang YAN
China Journal of Chinese Materia Medica 2022;47(16):4418-4427
		                        		
		                        			
		                        			Cold-heat combination is a common method in the treatment of ulcerative colitis, which is represented by classic drug pair, Coptidis Rhizoma and Zingiberis Rhizoma.The present study explored the synergetic effects of berberine and 6-shogaol, the primary components of Coptidis Rhizoma and Zingiberis Rhizoma, respectively, on intestinal inflammation and intestinal flora in mice with ulcerative colitis to reveal the effect and mechanism of cold-heat combination in the treatment of ulcerative colitis.The ulcerative colitis model was induced by dextran sulfate sodium(DSS) in mice.The model mice were administered with berberine(100 mg·kg~(-1)), 6-shogaol(100 mg·kg~(-1)), and berberine(50 mg·kg~(-1)) combined 6-shogaol(50 mg·kg~(-1)) by gavage, once per day.After 20 days of drug administration, mouse serum, colon tissues, and feces were sampled.Hematoxylin-eosin(HE) staining was used to observe histopathological changes in colon tissues.Alcian blue/periodic acid-Schiff(AB/PAS) staining was used to observe the changes in the mucus layer of colon tissues.Enzyme-linked immunosorbent assay(ELISA) was employed to detect the serum content of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), and interleukin-6(IL-6).Immunohistochemical method was adopted to detect the protein expression of macrophage surface markers F4/80, mucin-2, claudin-1, and zonula occludens-1(ZO-1) in colon tissues.High-throughput Meta-amplicon library sequencing was used to detect changes in the intestinal flora of mice.The results indicated that the 6-shogaol group, the berberine group, and the combination group showed significantly relieved intestinal injury, reduced number of F4/80-labeled positive macrophages in colon tissues, increased protein expression of mucin-2, claudin-1, and ZO-1, and decreased serum le-vels of TNF-α, IL-1β, and IL-6.Shannon, Simpson, Chao, and Ace indexes of the intestinal flora of mice in the 6-shogaol group and the combination group significantly increased, and Chao and Ace indexes in the berberine group significantly increased.As revealed by the bioinformatics analysis of intestinal flora sequencing, the relative abundance of Verrucomicrobia at the phylum, class, and order levels decreased significantly in all treatment groups after drug administration, while that of Bacillibacteria gradually increased.In the 6-shogaol group and the combination group, Akkermansia muciniphila completely disappeared, but acid-producing bacillus still existed in large quantities.As concluded, both 6-shogaol and berberine can inhibit intestinal inflammation, reduce the infiltration and activation of macrophages, relieve intestinal damage, reduce intestinal permeability, improve the structure of flora, and promote intestinal microecological balance.The combined application of berberine and 6-shogaol has a significant synergistic effect.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Berberine/therapeutic use*
		                        			;
		                        		
		                        			Catechols
		                        			;
		                        		
		                        			Claudin-1/therapeutic use*
		                        			;
		                        		
		                        			Colitis/metabolism*
		                        			;
		                        		
		                        			Colitis, Ulcerative/metabolism*
		                        			;
		                        		
		                        			Colon
		                        			;
		                        		
		                        			Dextran Sulfate/metabolism*
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Drugs, Chinese Herbal/pharmacology*
		                        			;
		                        		
		                        			Inflammation/metabolism*
		                        			;
		                        		
		                        			Interleukin-6/metabolism*
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Mucin-2/pharmacology*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			
		                        		
		                        	
9.Mechanism of combined treatment of rhein and emodin in Rhubarb for ulcerative colitis.
Fei GAO ; Hui-Yun ZHONG ; Ke-Xi CHEN ; Ling-Ling DONG ; Mei-Si LIN ; Hong-Ling DU
China Journal of Chinese Materia Medica 2022;47(15):4148-4155
		                        		
		                        			
		                        			This study aimed to explore the efficacy and mechanism of combined rhein and emodin in the treatment of ulcerative colitis(UC) from the aspects of network pharmacology, animal inflammation improvement and molecular mechanism. Network pharmacology predicted that combined rhein and emodin acted on 52 potential targets, mainly participating in signaling pathways such as cancer, PI3 K/AKT, microRNAs in cancer and apoptosis. PI3 K/AKT signaling pathway has been reported to be closely related to UC, and the optimal candidate pathway for combined therapy. The UC mice model was established by dextran sodium sulfate, and then the modeled mice were randomly divided into control group, model group, rhein group, emodin group, rhein+emodin group and sulfasalazine group. After administration, compared with the conditions in model group, body weight, disease activity index(DAI) score, colon length, TNF-α, IL-6, IL-1β and myeloperoxidase(MPO) of mice in rhein+emodin group were improved(P<0.01); colonic mucosal injury was significantly reduced; the expression of p-PI3 K/PI3 K and p-AKT/AKT proteins were down-regulated(P<0.01). All the above indices were better than those in the rhein/emodin group alone. The Jin's Q-values of the effect of combined rhein and emodin on colon length, TNF-α, IL-6, IL-1β, MPO, p-PI3 K/PI3 K and p-AKT/AKT were all greater than 1.15, which indicated that there was obvious synergistic effect between rhein and emodin. In all, rhein and emodin have synergistic effect in the treatment of UC, and the mechanism may be related to the inhibition of PI3 K/AKT signaling pathway and the down-regulation of proinflammatory factors. They are the new components in the treatment of UC, which is worthy of attention.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Anthraquinones
		                        			;
		                        		
		                        			Colitis, Ulcerative/metabolism*
		                        			;
		                        		
		                        			Colon
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Emodin/pharmacology*
		                        			;
		                        		
		                        			Interleukin-6/metabolism*
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Rheum
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			
		                        		
		                        	
10.Mechanism of Shenling Baizhu Powder in alleviation of ulcerative colitis in mice based on high-throughput transcriptome sequencing.
Juan SUN ; Xiao-Juan JIANG ; Ya-Dong WANG ; Ke-Long MA ; Zi-Hui LI ; Tian-Cheng WANG ; Tian-Ming WANG ; Jing SHAO ; Chang-Zhong WANG
China Journal of Chinese Materia Medica 2022;47(22):6155-6163
		                        		
		                        			
		                        			High-throughput transcriptome sequencing was used to study the mechanism of Shenling Baizhu Powder(SLBZP) in the alleviation of the dextran sulfate sodium(DSS)-induced ulcerative colitis(UC) in mice. The mouse model of DDS-induced UC was treated with SLBZP by gavage. The changes in general state, disease activity index(DAI), and colon length were observed. The hematoxylin-eosin(HE) staining was used to observe the pathological changes in the colon tissues of mice. Enzyme-linked immunosorbent assay(ELISA) was used to determine the expression levels of tumor necrosis factor-α(TNF-α), interleukin(IL)-1β, IL-6, IL-4, and IL-10 in the serum and tissues of mice. The differentially expressed genes in the control group, the model group, and the SLBZP group were analyzed by high-throughput transcriptome sequencing, and the Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were conducted on the differentially expressed genes. The results showed that after intragastric administration of SLBZP, the symptoms of diarrhea and bloody stool were improved, and the disease active index(DAI) score was reduced. SLBZP effectively reduced the inflammatory cell infiltration and goblet cell loss in the colonic mucosal tissue, reduced the levels of TNF-α, IL-1β, IL-6 in the serum and colon tissue, and increased the levels of IL-4 and IL-10 in the serum and colon tissue. There were 25 differential genes in SLBZP vs the model group, which were significantly enriched in immune response, immune system process, immunoglobulin production, and other biological processes. KEGG pathway analysis showed that the differential genes were enriched in signaling pathways such as neomycin, kanamycin, and gentamicin biosynthesis, cytokine-cytokine receptor interaction, primary immunodeficiency, and IgA synthesis of the intestinal immune network. This study shows that SLBZP may alleviate UC through immune regulation.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Colitis, Ulcerative/genetics*
		                        			;
		                        		
		                        			Colon
		                        			;
		                        		
		                        			Dextran Sulfate/adverse effects*
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Interleukin-10/genetics*
		                        			;
		                        		
		                        			Interleukin-4/genetics*
		                        			;
		                        		
		                        			Interleukin-6/genetics*
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Powders
		                        			;
		                        		
		                        			Transcriptome
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Drugs, Chinese Herbal/therapeutic use*
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail