1.Mechanism of tryptanthrin in treatment of ulcerative colitis in mice based on serum metabolomics.
Jie ZHU ; Bao-Long HOU ; Wen CHENG ; Ting WANG ; Zheng WANG ; Yan-Ni LIANG
China Journal of Chinese Materia Medica 2023;48(8):2193-2202
This study aims to explore the effect of tryptanthrin on potential metabolic biomarkers in the serum of mice with ulcerative colitis(UC) induced by dextran sulfate sodium(DSS) based on liquid chromatography-mass spectrometry(LC-MS) and predict the related metabolic pathways. C57BL/6 mice were randomly assigned into a tryptanthrin group, a sulfasalazine group, a control group, and a model group. The mouse model of UC was established by free drinking of 3% DSS solution for 11 days, and corresponding drugs were adminsitrated at the same time. The signs of mice were observed and the disease activity index(DAI) score was recorded from the first day. Colon tissue samples were collected after the experiment and observed by hematoxylin-eosin(HE) staining. The levels of interleukin-4(IL-4), interleukin-10(IL-10), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), and interleukin-8(IL-8) in the serum were measured by enzyme linked immunosorbent assay(ELISA). The serum samples were collected from 6 mice in each group for widely targeted metabolomics. The metabolic pathways were enriched by MetaboAnalyst 5.0. The results showed that compared with the model group, tryptanthrin treatment decreased the DAI score(P<0.05), alleviated the injury of the colon tissue and the infiltration of inflammatory cells, lowered the levels of proinflammatory cytokines, and elevated the levels of anti-inflammatory cytokines in the serum. The metabolomic analysis revealed 28 differential metabolites which were involved in 3 metabolic pathways including purine metabolism, arachidonic acid metabolism, and tryptophan metabolism. Tryptanthrin may restore the metabolism of the mice with UC induced by DSS to the normal level by regulating the purine metabolism, arachidonic acid metabolism, and tryptophan metabolism. This study employed metabolomics to analyze the mechanism of tryptanthrin in the treatment of UC, providing an experimental basis for the utilization and development of tryptanthrin.
Mice
;
Animals
;
Colitis, Ulcerative/drug therapy*
;
Tryptophan
;
Arachidonic Acid/metabolism*
;
Mice, Inbred C57BL
;
Colon
;
Cytokines/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Metabolomics
;
Purines/therapeutic use*
;
Dextran Sulfate/metabolism*
;
Disease Models, Animal
;
Colitis/chemically induced*
2.E.faecium QH06 alleviates TNBS-induced colonic mucosal injury in rats.
Kaheman KUERBANNAIMU ; Jian Feng ZHAO ; Aihemaiti MUKAIDAISI ; Han Ming WANG ; Ji Wei ZHU ; Wen Tao PAN ; Aximujiang KASIMUJIANG
Journal of Southern Medical University 2022;42(7):976-987
OBJECTIVE:
To investigate the effect of Enterococcus faecium QH06 on TNBS-induced ulcerative colitis (UC) in rats and explore the mechanisms in light of intestinal flora and intestinal immunity.
METHODS:
Thirty-six male Wistar rats were randomized equally into control group, UC model group, and E.faecium QH06 intervention group. The rats in the latter two groups were subjected to colonic enema with 5% TNBS/ethanol to induce UC, followed by treatment with intragastric administration of distilled water or E.faecium QH06 at the dose of 0.21 g/kg. After 14 days of treatment, the rats were examined for colon pathologies with HE staining. The mRNA and protein expression levels of IL-4, IL-10, IL-12, and IFN-γ in the colon tissues were detected using RT-qPCR and ELISA, and the expression of TLR2 protein was detected with immunohistochemistry and ELISA. Illumina Miseq platform was used for sequencing analysis of the intestinal flora of the rats with bioinformatics analysis. The correlations of the parameters of the intestinal flora with the expression levels of TLR2 and cytokines were analyzed.
RESULTS:
The rats with TNBS- induced UC showed obvious weight loss (P < 0.01) and severe colon tissue injury with high pathological scores (P < 0.01). The protein expression levels of IFN-γ, IL-12, and TLR2 (P < 0.01) and the mRNA expression levels of IFN-γ, IL-12 and IL-10 (P < 0.05) were significantly increased in the colon tissues of the rats with UC. Illumina Miseq sequence analysis showed that in UC rats, the Shannon index (P < 0.05) ACE (P < 0.01)and Chao (P < 0.05) index for the diversity of intestinal flora both decreased with a significantly increased abundance of Enterobacteriaceae (P < 0.01) and a lowered abundance of Burkholderiaceae (P < 0.05). Compared with the UC rats, the rats treated with E. faecium QH06 showed obvious body weight gain (P < 0.05), lessened colon injuries, lowered pathological score of the colon tissue (P < 0.05), decreased protein expressions of IFN- γ, IL- 12, and TLR2 and mRNA expressions of IFN- γ and IL-12 (P < 0.01 or 0.05), and increased protein expressions of IL- 4 (P < 0.05). The Shannon index ACE (P < 0.05) and Chao (P < 0.05) index of intestinal microflora were significantly increased, the abundance of Enterobacteriaceae was lowered and that of Burkholderiaceae and Rikenellaceae was increased in E.faecium QH06- treated rats (P < 0.01 or 0.05). Correlation analysis showed that IFN-γ was positively correlated with the abundance of Enterobacteriaceae, and IFN-γ was negatively correlated with the abundance of Prevotellaceae, Desulfovibrionaceae, norank_o_Mollicutes_RF39 and Clostridiales_vadinBB60_group; TLR2 was negatively correlated with Clostridiales_vadinBB60_group, norank_o_Mollicutes_RF39 and Prevotellaceae.
CONCLUSION
E.faecium QH06 can alleviate TNBS-induced colonic mucosal injury in rats, and its effect is mediated possibly by increasing the abundance of SCFA-producing bacteria such as Prevotellaceae and inhibiting abnormal immune responses mediated by TLR2.
Animals
;
Colitis, Ulcerative/drug therapy*
;
Colon/metabolism*
;
Interleukin-10
;
Interleukin-12/therapeutic use*
;
Male
;
RNA, Messenger/metabolism*
;
Rats
;
Rats, Wistar
;
Toll-Like Receptor 2/metabolism*
3.Mechanism of Shenling Baizhu Powder on treatment of ulcerative colitis based on NLRP3 inflammatory.
Yu-Hui LIU ; Zi-Ling RONG ; Hong-Yang ZHU ; Yu-Ting LI ; Yu YOU
China Journal of Chinese Materia Medica 2022;47(21):5863-5871
This study deciphered the mechanism of Shenling Baizhu Powder in treatment of mouse model of ulcerative colitis(UC) via NOD-like receptor thermoprotein domain 3(NLRP3) signaling pathway. After three days of adaptive feeding, 70 SPF-grade BALB/c mice were randomized into 7 groups: normal group, model group(dextran sodium sulfate, DSS), mesalazine group(DSS + 5-aminosalicylic acid, 5-ASA), NLRP3 inhibitor group(DSS + MCC950), and high-, medium-, and low-dose Shenling Baizhu Powder groups(DSS + high-, medium-, and low-dose Shenling Baizhu Powder), with 10 mice per group. The normal group had free access to double distilled water, and the remaining groups had free access to DSS-containing water to establish the acute UC model. Intragastric administration was started at the same time as modeling for one week. During the experiment, the general mental state and disease activity of each group of mice were recorded and scored. After the experiment, colon and serum samples were collected. The pathological changes in colon tissue were observed through hematoxylin-eosin(HE) staining. Enzyme-linked immunosorbent assay(ELISA) was employed to determine the levels of interleukin-18(IL-18) and myeloperoxidase(MPO) in colon tissue and interleukin-1β(IL-1β) in serum. Immunofluorescence(IF) and immunohistochemistry(IHC) methods were employed to examine the expression of NLRP3 and IL-18 in colon tissue. Western blot was employed to measure the protein levels of NLRP3, apoptosis-associated speck-like protein(ASC), cystein-aspartate protease 1(caspase-1), and downstream inflammatory cytokines in colon tissue. Compared with the normal group, the modeling of UC increased the disease activity index(DAI), colon pathological injury score, IL-1β level in serum, and IL-18 and MPO levels in colon tissue(P<0.05, P<0.01). Furthermore, the modeling caused obvious pathological changes and up-regulated the expression of NLRP3, caspase-1, ASC, pro-IL-1β, cleaved-IL-1β, pro-IL-18, and cleaved-IL-18 in the colon(P<0.01). Compared with the model group, the administration of corresponding drugs decreased the DAI, pathological injury score, IL-1β level in serum, and IL-18 and MPO levels in colon tissue, and down-regulated the protein levels of NLRP3, caspase-1, ASC, pro-IL-1β, cleaved-IL-1β, pro-IL-18, and cleaved-IL-18 in the colon(P<0.05, P<0.01). According to the results of previous study and this study, we concluded that Shenling Baizhu Powder can alleviate the inflammatory response and intestinal damage of DSS-induced UC by regulating the expression of the proteins and inflammatory cytokines associated with NLRP3 signaling pathway.
Mice
;
Animals
;
Colitis, Ulcerative/drug therapy*
;
Dextran Sulfate/adverse effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Interleukin-18/genetics*
;
Powders
;
Colon/metabolism*
;
Caspase 1
;
Mesalamine/adverse effects*
;
Mice, Inbred BALB C
;
Disease Models, Animal
;
Cytokines/metabolism*
;
Water
;
Colitis/pathology*
4.Lizhong Decoction Ameliorates Ulcerative Colitis in Mice via Regulation of Plasma and Urine Metabolic Profiling.
Ling WANG ; Jin-Hua TAO ; Yi-Fan CHEN ; Yu-Meng SHEN ; Shu JIANG
Chinese journal of integrative medicine 2022;28(11):1015-1022
OBJECTIVE:
To elucidate the mechanism of Lizhong Decoction (LZD) in treating dextran sodium sulfate (DSS)-induced colitis in mice based on metabonomics.
METHODS:
Thirty-six mice were randomly divided into 6 groups, including normal, model, low- (1.365 g/kg), medium- (4.095 g/kg) and high dose (12.285 g/kg) LZD and salazosulfadimidine (SASP) groups, 6 mice in each group. Colitis model mice were induced by DSS admistration for 7 days, and treated with low, medium and high dose LZD extract and positive drug SASP. Metabolic comparison of DSS-induced colitis and normal mice was investigated by using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass (UPLC-Q-TOF/MS) combined with Metabolynx™ software.
RESULTS:
The metabolic profiles of plasma and urine in colitis mice were distinctly ameliorated after LZD treatment (P<0.05). Potential biomarkers (9 in serum and 4 in urine) were screened and tentatively identified. The endogenous metabolites were mainly involved in primary bile acid, sphingolipid, linoleic acid, arachidonic acid, amino acids (alanine, aspartate, and glutamate), butanoate and glycerophospholipid metabolism in plasma, and terpenoid backbone biosynthesis, glycerophospholipid and tryptophan metabolism in urine. After LZD treatment, these markers notably restored to normal levels.
CONCLUSIONS
The study revealed the underlying mechanism of LZD on amelioration of ulcerative colitis based on metabonomics, which laid a foundation for further exploring the pathological and physiological mechanism, early diagnosis, and corresponding drug development of colitis.
Mice
;
Animals
;
Colitis, Ulcerative/drug therapy*
;
Tryptophan/adverse effects*
;
Aspartic Acid
;
Dextrans/adverse effects*
;
Drugs, Chinese Herbal/adverse effects*
;
Colitis/drug therapy*
;
Biomarkers/metabolism*
;
Amino Acids/adverse effects*
;
Glycerophospholipids/therapeutic use*
;
Sphingolipids/adverse effects*
;
Bile Acids and Salts/adverse effects*
;
Glutamates/adverse effects*
;
Alanine/adverse effects*
;
Arachidonic Acids/adverse effects*
;
Linoleic Acids/adverse effects*
;
Terpenes
5.Effect of Shaoyao Tang on ulcerative colitis in rats via regulation of TLR4/NF-κB signal pathway.
Yu ZHONG ; Xue-Bao ZHENG ; Hua YE ; Meng GUO ; Qiong WU ; Ying ZOU ; Hong-Gang CHI ; Yu-Zhen ZHU
China Journal of Chinese Materia Medica 2019;44(7):1450-1456
The aim of this paper was to investigate the effect of Shaoyao Tang on ulcerative colitis(UC) in rats via regulation of TLR4/NF-κB signal pathway. A total of 56 Wistar rats were randomly divided into 6 groups: normal control group(double distilled water), model group(double distilled water), mesalazine group(10 mL·kg~(-1)), high dose, middle dose and low dose Shaoyao Tang groups(2.4, 1.2, and 0.6 g·mL~(-1)). After UC rat models were established by 2, 4-dinitrochlorobenzene(DNCB)/ethanol enema, the rats received double distilled water or corresponding drugs twice a day for 7 days. After the treatment cycle, the general performance and disease activity index(DAI) of rats were observed on the next day. Then the rats were sacrificed. The length of colon was measured. Macroscopic and histological score of colon were evaluated. Histopathological changes of colon were observed by HE staining. Ultraviolet spectrophotometry detection was used to detect the content of myeloperoxidase(MPO) in blood and colon tissues. The levels of P-selectin, macrophage migration inhibitory factor(MIF) and thromboxane B_2(TXB_2) in blood and colon tissues were determined by ELISA. Immunohistochemistry and Western blot analysis were performed to detect the protein expressions of TLR4 and NF-κB in colon tissues. The results showed that as compared with the model group, Shaoyao Tang of different doses improved the general performance of UC rats. Moreover, high-dose Shaoyao Tang group showed the most obvious effect in scoring of disease activity index(P<0.001); both medium and high doses of Shaoyao Tang significantly inhibited the colon shortening and pathological injury, with significantly decreased expression levels of MPO, P-selectin, MIF and TXB_(2 )in serum and colon tissues of UC rats(P<0.001). Immunohistochemistry and Western blot assay showed that the levels of TLR4 and NF-κB protein expression in the colon tissues of Shaoyao Tang high-dose group were remarkably lower than that in the model group(P<0.001). This study shows that Shaoyao Tang has protective and repairing effects on UC, and its possible mechanism is achieved probably by regulating the TLR4/NF-κB pathway and inhibiting the expressions of MPO, P-selectin, MIF and TXB_2.
Animals
;
Colitis, Ulcerative
;
drug therapy
;
Colon
;
Drugs, Chinese Herbal
;
pharmacology
;
NF-kappa B
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Wistar
;
Signal Transduction
;
Toll-Like Receptor 4
;
metabolism
6.Progress in active compounds effective on ulcerative colitis from Chinese medicines.
Si-Yu CAO ; Sheng-Jie YE ; Wei-Wei WANG ; Bing WANG ; Tong ZHANG ; Yi-Qiong PU
Chinese Journal of Natural Medicines (English Ed.) 2019;17(2):81-102
Ulcerative colitis (UC), a chronic inflammatory disease affecting the colon, has a rising incidence worldwide. The known pathogenesis is multifactorial and involves genetic predisposition, epithelial barrier defects, dysregulated immune responses, and environmental factors. Nowadays, the drugs for UC include 5-aminosalicylic acid, steroids, and immunosuppressants. Long-term use of these drugs, however, may cause several side effects, such as hepatic and renal toxicity, drug resistance and allergic reactions. Moreover, the use of traditional Chinese medicine (TCM) in the treatment of UC shows significantly positive effects, low recurrence rate, few side effects and other obvious advantages. This paper summarizes several kinds of active compounds used in the experimental research of anti-UC effects extracted from TCM, mainly including flavonoids, acids, terpenoids, phenols, alkaloids, quinones, and bile acids from some animal medicines. It is found that the anti-UC activities are mainly focused on targeting inflammation or oxidative stress, which is associated with increasing the levels of anti-inflammatory cytokine (IL-4, IL-10, SOD), suppressing the levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8, IL-23, NF-κB, NO), reducing the activity of MPO, MDA, IFN-γ, and iNOS. This review may offer valuable reference for UC-related studies on the compounds from natural medicines.
Animals
;
Colitis, Ulcerative
;
drug therapy
;
pathology
;
Cytokines
;
metabolism
;
Disease Models, Animal
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
therapeutic use
;
Humans
;
Inflammation
;
drug therapy
;
metabolism
;
Medicine, Chinese Traditional
;
Oxidative Stress
;
drug effects
;
Phytochemicals
;
pharmacology
7.Network pharmacological study of Schizonepetae Herba and Saposhnikoviae Radix in treatment of ulcerative colitis.
Ying QU ; Shu-Xin ZHANG ; Lu ZHOU ; Li-Yuan FU ; Zi-Hao LIU ; Shi-Ying LI ; Ting-Ting DAI ; Xiang-Yang YANG ; Hui-Ru JI ; Min-Ran CAO
China Journal of Chinese Materia Medica 2019;44(24):5465-5472
The aim of this paper was to screen the active targets of Schizonepetae Herba and Saposhnikoviae Radix in the treatment of ulcerative colitis by means of network pharmacology,and to investigate their mechanism of action. The effective components of Schizonepetae Herba and Saposhnikoviae Radix were screened out by traditional Chinese medicine systematic pharmacological( TCMSP)database,with oral bioavilability( OB) ≥30% and drug-like( DL) ≥18% selected as the thresholds. Target PPI network was built between the main components and their corresponding targets. One hundred and eighty-two human genes corresponding to the medicine target sites were obtained from Uniprot database; 3 874 genes corresponding to ulcerative colitis were obtained from Genecard database.A total of 115 intersection genes were screened from disease genes and medicine genes,and the PPI interaction analysis was conducted by using String tool. Disease-target PPI network was drawn by using Cytoscape software,and component-target-disease network was constructed. One hundred and eight nodes and 1 882 connections were found,and then Cytoscape software was used to merge the networks and filter the core network for gene GO function analysis and KEGG pathway enrichment analysis. The mechanism of Schizonepetae Herba and Saposhnikoviae Radix was then verified by animal experiment. Gene GO functional analysis suggested that biological process,molecular functions and cell components were involved,and it was found that ulcerative colitis might be related to transcription factor activity,and cytokine receptor binding,etc. Gene KEGG pathway enrichment analysis showed that the mechanism of ulcerative colitis might be associated with TNF and Toll-like receptors( TLRs) signaling pathway-mediated cytoinflammatory factors interleukin-1( IL-1) and interleukin-6( IL6). The possible mechanism of the effective components of Schizonepetae Herba and Saposhnikoviae Radix in treating ulcerative colitis might be related to intervening the cytokine receptor binding of TNF and TLRs signaling pathways,reducing the transcription of nuclear factor-kappaB( NF-κB),and inhibiting the secretion of intestinal inflammatory factors IL-1 and IL-6.
Animals
;
Apiaceae/chemistry*
;
Colitis, Ulcerative/drug therapy*
;
Databases, Genetic
;
Drugs, Chinese Herbal/therapeutic use*
;
Humans
;
Interleukins/metabolism*
;
Lamiaceae/chemistry*
;
Medicine, Chinese Traditional
;
Phytotherapy
;
Plant Roots/chemistry*
;
Protein Interaction Mapping
;
Signal Transduction
;
Software
;
Toll-Like Receptors/metabolism*
8.Effect of total triterpenoids of Chaenomeles speciosa on PPARγ/SIRT1/NF-κBp65 signaling pathway and intestinal mucosal barrier of ulcerative colitis induced by DSS in mice.
Xing-Jun XIONG ; Xiao-Mei LI ; Yu-Min HE ; Xiao-Qin LI ; Hai-Yan XU ; Min-Lu FENG ; Hai-Bo HE ; Ji-Hong ZHANG ; Shu ZHU ; KOMATSU KATSUKO ; Kun ZOU
China Journal of Chinese Materia Medica 2018;43(21):4295-4304
To observe the effect of total triterpenoids of Chaenomeles speciosa on PPARγ/SIRT1/NF-κBp65 signaling pathway and intestinal mucosal barrier of ulcerative colitis induced by dextran sulfate sodium (DSS) in mice, C57BL/6 mice were randomly divided into normal group, model group, total triterpenoids of C. speciosa (50, 100 mg·kg⁻¹) groups and sulfasalazine (250 mg·kg⁻¹) group. The ulcerative colitis (UC) model was induced by orally administering 2.5% DSS to the experimental mice, and the corresponding drugs were given to each group 3 days before the administration with 2.5% DSS. The normal group and the model group were given the equal volume of 0.5% carboxymethyl cellulose sodium solution by gavage continuously for 10 days, q.d. The general conditions of the mice were observed on a daily basis, and the disease activity index (DAI) score was recorded. On the 10th day after the treatment, mice were put to death, the contents of TNF-α, IL-1β, IL-6, IFN-γ, IL-4 and IL-10 in the blood were detected, colon length was measured, colon mucosa damage index (CMDI) score was calculated, and MPO activity detection and histomorphology analysis were conducted. Real-time PCR was applied to detect the mRNA expressions of E-cadherin, occluding,MUC2 and TFF3; the protein expressions of SIRT1, IKKβ, p-IKKβ, IκBα, p-IκBα and cytosol and nucleus PPARγ, NF-κBp65 in intestinal tissue were detected by western blot. The results indicated that total triterpenoids of C. speciosa (50, 100 mg·kg⁻¹) could significantly improve the general conditions of UC mice, reduce the DAI, CMDI and histopathological scores, increase the colon length, reduce the colonic mucosa ulcers, erosion and inflammatory infiltration, restore the normal intestinal mucosal barrier function, reduce the contents of TNF-α, IL-1β, IL-6, IFN-γ, increase the contents of IL-4 and IL-10 in the blood, inhibit MPO activity in colon tissue, up-regulate the mRNA expressions of E-cadherin, occludin, MUC2 and TFF3 in colon tissue, down-regulate the protein expressions of cytosol PPARγ, tissue p-IKKβ, p-IκBα and nucleus NF-κBp65 in the colon tissue, decrease the p-IKKβ/IKKβ and p-IκBα/IκBα ratios, up-regulate the protein expressions of nucleus PPARγ, tissue SIRT1 and cytosol NF-κBp65 (<0.05 or <0.01, respectively), with a dose-effect relationship between the total triterpenoids of C. speciosa treated groups. These findings suggested that total triterpenoids of C. speciosa had a significantly therapeutic effect on UC mice induced by DSS, its mechanism might be related to the regulation of PPARγ/SIRT1/NF-κBp65 signaling pathway, the inhibition of pro-inflammatory factor formation and the up-regulation of protein expression of protective factors.
Animals
;
Colitis, Ulcerative
;
chemically induced
;
drug therapy
;
Colon
;
drug effects
;
Dextran Sulfate
;
Disease Models, Animal
;
Intestinal Mucosa
;
drug effects
;
Mice
;
Mice, Inbred C57BL
;
PPAR gamma
;
metabolism
;
Random Allocation
;
Rosaceae
;
chemistry
;
Signal Transduction
;
drug effects
;
Sirtuin 1
;
metabolism
;
Transcription Factor RelA
;
metabolism
9.Changing Paradigm in the Management of Inflammatory Bowel Disease.
The Korean Journal of Gastroenterology 2015;65(5):268-272
Inflammatory bowel disease (IBD) is a chronic progressive idiopathic inflammatory disorder that involves the digestive tract from the mouth to the anus. Over the past decades, many therapeutic strategies have been developed to manage IBD, but therapeutic strategies based only on relief of clinical symptoms have not changed the natural history of this disease entity. This underlines the importance of understanding the natural history of IBD itself. When we look at the natural history of Crohn's disease (CD), it first begins with inflammation of the intestinal mucosa and this inflammatory reaction proceeds to stenosing or penetrating reaction if not adequately controlled. However, it takes a considerable amount of time before mucosal inflammation proceeds to stenosis of the intestinal lumen or penetration into the adjacent bowel. Therefore, it can be expected that if proper care is given during that period, progression of CD to such a complicated disease could be prevented. Even though the concept of mucosal healing was introduced in the early 1990s, no correlation could be observed between healing of mucosal lesions and relief of clinical symptoms. However, the introduction of biologic agents targeting tumor necrosis factor has changed the way to treat IBD that is refractory to standard medications and has allowed us to aim for a new therapeutic goal, 'deep remission'. Further advances in biologic agents have provided highly effective treatments for IBD, making deep remission a realistic goal. Whether IBD patients may benefit by experiencing a 'deep' remission beyond the control of clinical symptoms need to be evaluated in further investigation. Nevertheless, it can be anticipated that attaining deep remission might ultimately have an impact on important outcomes such as the need for surgery and the quality of life.
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
;
Antibodies, Monoclonal/therapeutic use
;
Colitis, Ulcerative/drug therapy/metabolism/pathology
;
Crohn Disease/drug therapy/metabolism/pathology
;
Humans
;
Inflammatory Bowel Diseases/drug therapy/metabolism/*pathology
;
Intestinal Mucosa/metabolism/pathology
;
Mesalamine/therapeutic use
;
Tumor Necrosis Factor-alpha/immunology/metabolism
10.Apocynin relieves inflammation in dextran sulfate sodium-induced ulcerative colitis mice: the role of NOXs-ROS-p38MAPK pathway.
Dan-Dan WEI ; Xu-Hong LIN ; Hui-Chao WANG ; Bin WANG ; Chun-Yang BAI ; Ya-Qiang WANG ; Guo-En LI ; Xue-Qun REN
Acta Physiologica Sinica 2015;67(1):74-82
The study is aimed to explore the molecular mechanism of the treatment of apocynin in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice. 5% DSS was used to mimic the UC model, and 2% apocynin was applied to treat the UC mice. HE staining was used for histopathological evaluation. Chemiluminescence technique was used to measure reactive oxygen species (ROS) production, and the rate of consumption of NADPH inhibited by DPI was detected to determine the NADPH oxidases (NOXs) activity. Western blot was applied to identify the level of p38MAPK phosphorylation, Griess reaction assay to analyze NO production, immunoenzymatic method to determine prostaglandin E2 (PGE2) production, real time RT-PCR and Western blot to identify the expression of iNOS and COX2, and enzyme linked immunosorbent assay to detect inflammatory cytokines TNF-α, IL-6, IFN-γ, IL-1β. Rat neutrophils were separated, and then ROS production, NOXs activity, NO and PGE2 production, NOX1 and p-p38MAPK expression were detected. Compared with the UC group, apocynin decreased ROS over-production and NOXs activity (P < 0.01), reduced p38MAPK phosphorylation, inhibited NO, PGE2 and cytokines production (P < 0.01). Apocynin also decreased NOXs activity and ROS over-production (P < 0.01), inhibited p38MAPK phosphorylation and NOX1 expression, and reduced NO and PGE2 production (P < 0.01) in separated neutrophils from UC mice. Therefore, apocynin could relieve inflammation in DSS-induced UC mice through inhibiting NOXs-ROS-p38MAPK signal pathway, and neutrophils play an important role.
Acetophenones
;
pharmacology
;
Animals
;
Colitis, Ulcerative
;
chemically induced
;
drug therapy
;
Cytokines
;
metabolism
;
Dextran Sulfate
;
Inflammation
;
drug therapy
;
MAP Kinase Signaling System
;
Mice
;
NADH, NADPH Oxidoreductases
;
metabolism
;
Neutrophils
;
metabolism
;
Rats
;
Reactive Oxygen Species
;
metabolism
;
p38 Mitogen-Activated Protein Kinases
;
metabolism

Result Analysis
Print
Save
E-mail