1.Phenotype and genotype analyses of two pedigrees with inherited fibrinogen deficiency.
Kai Qi JIA ; Zheng Xian SU ; Hui Lin CHEN ; Xiao Yong ZHENG ; Man Lin ZENG ; Ke ZHANG ; Long Ying YE ; Li hong YANG ; Yan Hui JIN ; Ming Shan WANG
Chinese Journal of Hematology 2023;44(11):930-935
Objective: To analyze the phenotype and genotype of two pedigrees with inherited fibrinogen (Fg) deficiency caused by two heterozygous mutations. We also preliminarily probed the molecular pathogenesis. Methods: The prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT) and plasma fibrinogen activity (Fg∶C) of all family members (nine people across three generations and three people across two generations) were measured by the clotting method. Fibrinogen antigen (Fg:Ag) was measured by immunoturbidimetry. Direct DNA sequencing was performed to analyze all exons, flanking sequences, and mutated sites of FGA, FGB, and FGG for all members. Thrombin-catalyzed fibrinogen polymerization was performed. ClustalX 2.1 software was used to analyze the conservatism of the mutated sites. MutationTaster, PolyPhen-2, PROVEAN, SIFT, and LRT online bioinformatics software were applied to predict pathogenicity. Swiss PDB Viewer 4.0.1 was used to analyze the changes in protein spatial structure and molecular forces before and after mutation. Results: The Fg∶C of two probands decreased (1.28 g/L and 0.98 g/L, respectively). The Fg∶Ag of proband 1 was in the normal range of 2.20 g/L, while it was decreased to 1.01 g/L in proband 2. Through genetic analysis, we identified a heterozygous missense mutation (c.293C>A; p.BβAla98Asp) in exon 2 of proband 1 and a heterozygous nonsense mutation (c.1418C>G; p.BβSer473*) in exon 8 of proband 2. The conservatism analysis revealed that Ala98 and Ser473 presented different conservative states among homologous species. Online bioinformatics software predicted that p.BβAla98Asp and p.BβSer473* were pathogenic. Protein models demonstrated that the p.BβAla98Asp mutation influenced hydrogen bonds between amino acids, and the p.BβSer473* mutation resulted in protein truncation. Conclusion: The dysfibrinogenemia of proband 1 and the hypofibrinogenemia of proband 2 appeared to be related to the p.BβAla98Asp heterozygous missense mutation and the p.BβSer473* heterozygous nonsense mutation, respectively. This is the first ever report of these mutations.
Humans
;
Afibrinogenemia/genetics*
;
Codon, Nonsense
;
Pedigree
;
Phenotype
;
Fibrinogen/genetics*
;
Genotype
2.Autosomal dominant mental retardation type 5 caused by SYNGAP1 gene mutations: a report of 8 cases and literature review.
Xiao-Le WANG ; Ya-Nan TIAN ; Chen CHEN ; Jing PENG
Chinese Journal of Contemporary Pediatrics 2023;25(5):489-496
OBJECTIVES:
To summarize the clinical phenotype and genetic characteristics of children with autosomal dominant mental retardation type 5 caused by SYNGAP1 gene mutations.
METHODS:
A retrospective analysis was performed on the medical data of 8 children with autosomal dominant mental retardation type 5 caused by SYNGAP1 gene mutations who were diagnosed and treated in the Department of Pediatrics, Xiangya Hospital of Central South University.
RESULTS:
The mean age of onset was 9 months for the 8 children. All children had moderate-to-severe developmental delay (especially delayed language development), among whom 7 children also had seizures. Among these 8 children, 7 had novel heterozygous mutations (3 with frameshift mutations, 2 with nonsense mutations, and 2 with missense mutations) and 1 had 6p21.3 microdeletion. According to the literature review, there were 48 Chinese children with mental retardation caused by SYNGAP1 gene mutations (including the children in this study), among whom 40 had seizures, and the mean age of onset of seizures was 31.4 months. Frameshift mutations (15/48, 31%) and nonsense mutations (19/48, 40%) were relatively common in these children. In terms of treatment, among the 33 children with a history of epileptic medication, 28 (28/33, 85%) showed response to valproic acid antiepileptic treatment and 16 (16/33, 48%) achieved complete seizure control after valproic acid monotherapy or combined therapy.
CONCLUSIONS
Children with autosomal dominant mental retardation type 5 caused by SYNGAP1 gene mutations tend to have an early age of onset, and most of them are accompanied by seizures. These children mainly have frameshift and nonsense mutations. Valproic acid is effective for the treatment of seizures in most children.
Child
;
Humans
;
Intellectual Disability/diagnosis*
;
Codon, Nonsense
;
Retrospective Studies
;
Valproic Acid
;
ras GTPase-Activating Proteins/genetics*
;
Mutation
;
Seizures/genetics*
3.Analysis of clinical features and ZBTB18 gene variant in a child with autosomal dominant mental disorder type 22.
Jia ZHANG ; Yang LI ; Huan LUO ; Yajun SHEN ; Meng YUAN ; Zuozhen YANG ; Jing GAN
Chinese Journal of Medical Genetics 2022;39(3):293-296
OBJECTIVE:
To analyze the clinical characteristics and ZBTB18 gene variant in a child with epilepsy and global developmental delay.
METHODS:
Clinical data and laboratory examination of the patient were reviewed. Whole exome sequencing (WES) was also carried out for the family trio.
RESULTS:
The main manifestations of the child included global developmental delay, short stature, epileptic seizures. EEG revealed frequent occurrence of sharp (slow) waves in the right central region during sleeping, with sharp waves occasionally seen in the frontal and right posterior temporal regions. Cranial MRI has shown no obvious abnormality. WES has identified a de novo pathogenic variant in the ZBTB18 gene [NM_205768.3: exon 2: c.1282_1283del (p.Phe428Leufs*72)]. Based on the guidelines from American College of Medical Genetics and Genomics (ACMG), the variant was classified as pathogenic (PS2+PVS1_Moderate+PM2_Supporting). Following treatment with levetiracetam and rehabilitation, the seizures have been controlled for nearly half a year, with improvement of the psychomotor and language development. So far 28 children have been discovered with ZBTB18 gene mutations, and there was a significant difference in the clinical phenotypes of motor retardation, language retardation and epilepsy between those harboring frameshift/nonsense mutations and missense mutations.
CONCLUSION
The c.1282_1283del (p.Phe428leufs *72) variant of the ZBTB18 probably underlay the autosomal dominant mental disorder type 22 in this child. Compared with missense mutations, frameshift/nonsense mutations may predispose more to motor retardation, delayed language development and epilepsy.
Codon, Nonsense
;
Epilepsy/genetics*
;
Humans
;
Intellectual Disability/genetics*
;
Mutation
;
Whole Exome Sequencing
4.Effects of the ITGA2B Nonsense Mutation (c.2659C > T, p.Q887X) on Platelet Function in a Mouse Model of Glanzmann's Thrombasthenia Generated with CRISPR/Cas9 Technology.
Fei YANG ; Miao JIANG ; Zeng-Hua LIN ; Zhan-Li XIE ; Zhen-Ni MA ; Li YANG ; Hong LIU ; Zhao-Yue WANG ; Lu ZHOU
Journal of Experimental Hematology 2022;30(2):559-564
OBJECTIVE:
To construct a mouse model of Glanzmann's thrombasthenia (GT) with ITGA2B c.2659 C>T (p.Q887X) nonsense mutation by CRISPR/Cas9 technology, and then further explore the expression and function of glycoprotein αIIbβ3 on the surface of platelet membrane.
METHODS:
The donor oligonucleotide and gRNA vector were designed and synthesized according to the ITGA2B gene sequence. The gRNA and Cas9 mRNA were injected into fertilized eggs with donor oligonucleotide and then sent back to the oviduct of surrogate mouse. Positive F0 mice were confirmed by PCR genotyping and sequence analysis after birth. The F1 generation of heterozygous GT mice were obtained by PCR and sequencing from F0 bred with WT mice, and then homozygous GT mice and WT mice were obtained by mating with each other. The phenotype of the model was then further verified by detecting tail hemorrhage time, saphenous vein bleeding time, platelet aggregation, expression and function of αIIbβ3 on the surface of platelet.
RESULTS:
The bleeding time of GT mice was significantly longer than that of WT mice (P<0.01). Induced by collagen, thrombin, and adenosine diphosphate (ADP), platelet aggregation in GT mice was significantly inhibited (P<0.01, P<0.01, P<0.05). Flow cytometry analysis showed that the expression of αIIbβ3 on the platelet surface of GT mice decreased significantly compared with WT mice (P<0.01), and binding amounts of activated platelets to fibrinogen were significantly reduced after thrombin stimulation (P<0.01). The spreading area of platelet on fibrinogen in GT mice was significantly smaller than that in WT mice (P<0.05).
CONCLUSION
A GT mouse model with ITGA2B c.2659 C>T (p.Q887X) nonsense mutation has been established successfully by CRISPR/Cas9 technology. The aggregation function of platelet in this model is defective, which is consistent with GT performance.
Animals
;
CRISPR-Cas Systems
;
Codon, Nonsense
;
Disease Models, Animal
;
Fibrinogen/genetics*
;
Humans
;
Integrin alpha2/genetics*
;
Mice
;
Oligonucleotides
;
Platelet Glycoprotein GPIIb-IIIa Complex/genetics*
;
RNA, Guide
;
Thrombasthenia/genetics*
;
Thrombin/genetics*
5.Analysis of A Pedigree with Hereditary Coagulation Factor Ⅻ Deficiency Caused by Compound Heterozygous Mutations.
Jing CHEN ; Yun-Xia LI ; Fan ZHONG ; Ren-Hua LI ; Ji-Yun YANG ; Wen-Jing ZHOU
Journal of Experimental Hematology 2022;30(2):571-576
OBJECTIVE:
To analysis clinical phenotype and potential genetic cause of a family affected with hereditary coagulation factor Ⅻ deficiency.
METHODS:
The prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen (FIB), D-Dimer (D-D), coagulation factor Ⅻ activity (FⅫ:C) and coagulation factor Ⅻ antigen (FⅫ:Ag) were determined for phenotype diagnosis of the proband and his family members(3 generations and 5 people). Targeted capture and whole exome sequencing were performed in peripheral blood sample of the proband. Possible disease-causing mutations of F12 gene were obtained and further confirmed by Sanger sequencing. The corresponding mutation sites of the family members were analyzed afterwards. The online bioinformatics software AutoPVS1 and Mutation Taster was used to predict the effects of mutation sites on protein function.
RESULTS:
The APTT of the proband was significantly prolonged, reaching 180.9s. FⅫ:C and FⅫ:Ag of the proband was significantly reduced to 0.8% and 4.17%, respectively. The results of whole exome sequencing displayed that there were compound heterozygous mutations in F12 gene of the proband, including the c.1261G>T heterozygous nonsense mutation in exon 11 (causing p.Glu421*) and the c.251dupG heterozygous frameshift mutation in exon 4 (causing p.Trp85Metfs*53). Both mutations are loss of function mutations with very strong pathogenicity, leading to premature termination of the protein. AutoPVS1 and Mutation Taster software predicted both mutations as pathogenic mutations. The results of Sanger sequencing revealed that c.1261G>T heterozygous mutation of the proband was inherited from his mother, for which his brother and his daughter were c.1261G>T heterozygous carriers. Genotype-phenotype cosegregation was observed in this family.
CONCLUSION
The c.1261G>T heterozygous nonsense mutation in exon 11 and the c.251dupG heterozygous frameshift mutation in exon 4 of the F12 gene probably account for coagulation factor Ⅻ deficiency in this family. This study reports two novel pathogenic F12 mutations for the first time worldwide.
Blood Coagulation Disorders
;
Codon, Nonsense
;
Factor XII/genetics*
;
Female
;
Heterozygote
;
Humans
;
Male
;
Mutation
;
Pedigree
6.Correlation Analysis of FⅧGene Mutation and the Production of FⅧ Inhibitor with Severe Hemophilia A Patients in a Single Medical Center.
Lyu-Kai ZHU ; Xia-Lin ZHANG ; Xiu-E LIU ; Xiu-Yu QIN ; Gang WANG ; Lin-Hua YANG
Journal of Experimental Hematology 2022;30(5):1536-1540
OBJECTIVE:
To investigate the relationship between the type of FⅧgene mutation and the development of FⅧ inhibitors in patients with severe haemophilia A (HA).
METHODS:
The medical records of 172 patients with severe hemophilia A from January 2009 to September 2020 were reviewed. The types of FⅧgene mutations and the production of factor Ⅷ inhibitors were collected and divided into high-risk mutation group ( intron 1 inversions, large deletions, nonsense mutations), low-risk mutation group (missense mutations, small deletions and insertions, splice site mutations) and intron 22 inversions group. The correlation of FⅧgenotype and the production of FⅧ inhibitors in patients with HA were analyzed.
RESULTS:
Among 172 patients with severe HA, 21 cases(12.21%) developed FⅧ inhibitors. The cumulative incidence of FⅧ inhibitor development was 32%(10/31) in high risk group (75% patients with large deletions, 43% patients with intron 1 inversions, 20% patients with nonsense mutations) and 5%(2/43) in low risk group(6% patients with missense mutations, 5% patients with small deletions or insertions and 0% patient with a splice site mutation) and 9%(9/98) in intron 22 inversions group. Compared with the risk of FⅧ inhibitor development in intron 22 inversions group, the risk of FⅧ inhibitor development in high risk group was higher (OR=4.7, 95% CI: 1.7-13.0), the risk of FⅧ inhibitor development in low risk group was equal (OR=0.5, 95% CI: 0.1-2.3). Compared with the risk of inhibitor development in low risk group, the risk of FⅧ inhibitor development in high risk group was higher (OR=9.8, 95% CI: 2.0-48.7).
CONCLUSION
Gene mutations of patients with severe HA in high-risk group which include intron 1 inversions, large deletions, nonsense mutations are a risk factor for FⅧ inhibitor production.
Codon, Nonsense
;
DNA Mutational Analysis
;
Factor VIII/genetics*
;
Hemophilia A/genetics*
;
Humans
;
Introns
;
Mutation
7.Intellectual disability due to heterozygous c.40C>T variant of TRIP12 gene in a patient.
Jiao LIU ; Xueping CHEN ; Huifang SHANG
Chinese Journal of Medical Genetics 2021;38(2):131-133
OBJECTIVE:
To explore the genetic basis for a patient with intellectual disability.
METHODS:
Whole exome sequencing and Sanger sequencing were carried out for the patient. The result was verified in her family.
RESULTS:
DNA sequencing revealed that the patient has carried a heterozygous nonsense c.40C>T (p.Arg14X) variant of the TRIP12 gene, which was de novo in origin. The variant was unrecorded in the Human Gene Mutation Database. Based on the American College of Medical Genetics and Genomics standards and guidelines, the variant was predicted to be pathogenic (PVS1+ PS2+ PP3).
CONCLUSION
The patient was diagnosed with autosomal dominant intellectual disability due to heterozygous c.40C>T variant of the TRIP12 gene.
Carrier Proteins/genetics*
;
Codon, Nonsense
;
Female
;
Heterozygote
;
Humans
;
Intellectual Disability/genetics*
;
Ubiquitin-Protein Ligases/genetics*
;
Whole Exome Sequencing
8.Analysis of genetic variants in a pedigree affected with hereditary multiple osteochondroma.
Xiaoyan GUO ; Qinqin ZHENG ; Mingrui LIN ; Yiyuan ZHANG ; Tengfei SHI
Chinese Journal of Medical Genetics 2021;38(6):549-552
OBJECTIVE:
To explore the genetic basis for a pedigree affected with hereditary multiple osteochondroma (HMO).
METHODS:
Peripheral blood samples were collected from the proband and members of his pedigree with informed consent. Following extraction of genomic DNA, all coding exons and flanking intronic sequences (-10 bp) of the EXT1 and EXT2 genes were subjected to targeted capture and next generation sequencing (NGS). Suspected variant was verified by Sanger sequencing.
RESULTS:
A heterozygous nonsense variant (c.1911C>A) was found in exon 10 of the EXT1 gene in the proband and his affected father but not in a healthy sister and normal controls. The variant was classified as a pathogenic based on the guidelines of the American College of Medical Genetics and Genomics (PVS1+PM2+PP1). Bioinformatic analysis predicted that the c.1911C>A variant may be disease-causing via nonsense-mediated mRNA decay and anomalous splicing.
CONCLUSION
The c.1911C>A variant probably underlay the disease in this pedigree. Discovery of this variant enriched the variant spectrum of HMO.
Codon, Nonsense
;
Exons/genetics*
;
Exostoses, Multiple Hereditary/genetics*
;
Heterozygote
;
Humans
;
Pedigree
9.Clinical and genetic analysis of a case with infantile Parkinsonism with motor delay due to tyrosine hydroxylase deficiency.
Chongfen CHEN ; Jinghui KONG ; Lili GE ; Lei LIU ; Yinsen SONG
Chinese Journal of Medical Genetics 2020;37(4):455-458
OBJECTIVE:
To explore the clinical characteristics and genetic variants in a child with tyrosine hydroxylase-deficient infantile Parkinsonism with motor delay.
METHODS:
Clinical feature of the patient was summarized. Genomic DNA was extracted from peripheral blood samples taken from the child and her family members. All exons of GCH1, TH and SPR genes were subjected to targeted capture and next-generation sequencing. Suspected variants were verified by Sanger sequencing.
RESULTS:
The child could not sit alone at 7 month and 11 days. Physical examination suggested motor retardation and hypotonia, limb stiffness, head nodding, slight torticollis, and language and intellectual developmental delays. She developed involuntary shaking of limbs at 3 month old, which lasted approximately 10 seconds and aggregated with excitement and before sleeping. Cranial MRI revealed widening of subarachnoid space on the temporomandibular and particularly temporal sides. Genetic testing revealed that she has carried a nonsense c.457C>T (p.R153X) variant, which was known to be pathogenic, and a novel missense c.720C>G (p.I240M) variant of the TH gene. The two variants were derived from her father and mother, respectively.
CONCLUSION
The child was diagnosed as tyrosine hydroxylase-deficient infantile Parkinsonism with motor delay due to compound heterozygous variants of the TH gene. Above finding has enriched the spectrum of TH gene variants.
Brain
;
diagnostic imaging
;
Codon, Nonsense
;
Dystonic Disorders
;
congenital
;
genetics
;
Female
;
Genetic Testing
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Infant
;
Magnetic Resonance Imaging
;
Mutation
;
Parkinsonian Disorders
;
genetics
;
Tyrosine 3-Monooxygenase
;
genetics
10.Diagnosis of Bainbridge-Ropers syndrome due to de novo ASXL3 variant by high throughput sequencing.
Yuqiang LYU ; Dongmei ZHAO ; Kaihui ZHANG ; Min GAO ; Jian MA ; Dong WANG ; Zhongtao GAI ; Yi LIU
Chinese Journal of Medical Genetics 2020;37(4):452-454
OBJECTIVE:
To explore the clinical and genetic features of a patient with mental retardation.
METHODS:
G-Banding chromosomal karyotyping and high-throughput sequencing was carried out for the child. Suspected variant was validated in his family by Sanger sequencing and bioinformatic analysis.
RESULTS:
The patient was found to carry a de novo heterozygous c.4090G>T (p.Gly1364X) variant of the ASXL3 gene, which was known to predispose to Bainbridge-Ropers syndrome.
CONCLUSION
The nonsense c.4090G>T (p.Gly1364X) variant probably accounts for the disease in this patient.
Child
;
Codon, Nonsense
;
Developmental Disabilities
;
genetics
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Intellectual Disability
;
genetics
;
Phenotype
;
Syndrome
;
Transcription Factors
;
genetics

Result Analysis
Print
Save
E-mail