1.Propofol protects human cardiac AC16 cells from CoCl2-induced hypoxic injury.
Liu HAN ; Xiaodan ZHANG ; Yanning QIAN
Journal of Central South University(Medical Sciences) 2019;44(3):307-314
To explore the effect of propofol on human cardiac AC16 cells under CoCl2-induced hypoxic injury and the possible mechanisms.
Methods: Human AC16 cardiomyocytes were treated with cobalt chloride (CoCl2) to mimic hypoxic condition in cultured cardiomyocytes. The AC16 cells were divided into 3 groups: a control group, a CoCl2 hypoxia group (CoCl2 group), and a propofol+CoCl2 group (propofol+ CoCl2 group). The cell viability was assessed by cell counting kit-8 (CCK-8). Cell apoptosis ratio (AR) and the mitochondrial membrane potential (Δψm) were detected by flow cytometry. The reactive oxygen species (ROS) production in AC16 cells were determined with the ROS-sensitive fluorescent probe. Meanwhile, total intracellular levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in AC16 cells were detected with commercially available kits. Western blot was used to evaluate the activation of c-Jun N-terminal kinase (JNK) and p38 signaling pathways.
Results: 1) Compared with the control group, AC16 cell viability was decreased significantly in the CoCl2 group following the treatment with 500 μmol/L CoCl2 (P<0.01); 2) Compared with the control group, AR value in AC16 cells was increased significantly in the CoCl2 group, while Δψm was decreased significantly (all P<0.01). Compared with the CoCl2 group, AR value in AC16 cells was decreased significantly in the propofol+CoCl2 group, while Δψm was increased significantly (both P<0.05); 3) Compared with the control group, the levels of ROS and MDA were increased significantly, and the level of SOD was significantly decreased in the CoCl2 group (all P<0.01). Compared with the CoCl2 group, the ROS and MDA levels in the propofol+CoCl2 group were increased significantly and the SOD levels were decreased significantly (all P<0.05); 4) Compared with the control group, the phosphorylation levels of JNK and p38 were increased significantly (both P<0.05) in the CoCl2 group. Compared with the CoCl2 group, the phosphorylation levels of JNK and p38 were decreased significantly in the propofol+CoCl2 group (both P<0.05).
Conclusion: The pretreatment with propofol may protect human cardiac AC16 cells from the chemical hypoxia-induced injury through regulation of JNK and p38 signaling pathways.
Apoptosis
;
Cell Hypoxia
;
Cell Line
;
Cell Survival
;
Cobalt
;
pharmacology
;
Humans
;
Hypoxia
;
JNK Mitogen-Activated Protein Kinases
;
Propofol
;
Reactive Oxygen Species
2.Extracts of Celastrus Orbiculatus Inhibit Cancer Metastasis by Down-regulating Epithelial-Mesenchymal Transition in Hypoxia-Induced Human Hepatocellular Carcinoma Cells.
Ya-Yun QIAN ; You-Yang SHI ; Song-Hua LU ; Ting YANG ; Xue-Yu ZHAO ; Yan YAN ; Wen-Yuan LI ; Yan-Qing LIU
Chinese journal of integrative medicine 2019;25(5):334-341
OBJECTIVE:
To evaluate the effects of Celastrus Orbiculatus extracts (COE) on metastasis in hypoxia-induced hepatocellular carcinoma cells (HepG2) and to explore the underlying molecular mechanisms.
METHODS:
The effect of COE (160, 200 and 240 µ g/mL) on cell viability, scratch-wound, invasion and migration were studied by 3-4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-H-tetrazolium bromide (MTT), scratch-wound and transwell assays, respectively. CoCl was used to establish a hypoxia model in vitro. Effects of COE on the expressions of E-cadherin, vimentin and N-cadherin were investigated with Western blot and immunofluorescence analysis, respectively.
RESULTS:
COE inhibited proliferation and metastasis of hypoxia-induced hepatocellular carcinoma cells in a dose-dependent manner (P<0.01). Furthermore, the expression of epithelial-mesenchymal transition (EMT) related markers were also remarkably suppressed in a dose-dependent manner (P<0.01). In addition, the upstream signaling pathways, including the hypoxia-inducible factor 1 α (Hif-1 α) and Twist1 were suppressed by COE. Additionally, the Hif-1 α inhibitor 3-5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), potently suppressed cell invasion and migration as well as expression of EMT in hypoxia-induced HepG2 cells. Similarly, the combined treatment with COE and YC-1 showed a synergistic effect (P<0.01) compared with the treatment with COE or YC-1 alone in hypoxia-induced HepG2 cells.
CONCLUSIONS
COE significantly inhibited the tumor metastasis and EMT by suppressing Hif-1 α/Twist1 signaling pathway in hypoxia-induced HepG2 cell. Thus, COE might have potential effect to inhibit the progression of HepG2 in the context of tumor hypoxia.
Biomarkers, Tumor
;
metabolism
;
Carcinoma, Hepatocellular
;
drug therapy
;
pathology
;
Celastrus
;
chemistry
;
Cell Hypoxia
;
drug effects
;
Cell Proliferation
;
drug effects
;
Cell Shape
;
drug effects
;
Cobalt
;
Down-Regulation
;
drug effects
;
Epithelial-Mesenchymal Transition
;
drug effects
;
Hep G2 Cells
;
Humans
;
Liver Neoplasms
;
drug therapy
;
pathology
;
Neoplasm Invasiveness
;
Neoplasm Metastasis
;
Neoplasm Proteins
;
metabolism
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
Signal Transduction
;
drug effects
3.Heijiangdan ointment relieves oxidative stress from radiation dermatitis induced by (60)Co γ-ray in mice.
Lin YANG ; Ming-wei YU ; Xiao-min WANG ; Yi ZHANG ; Guo-wang YANG ; Xiao-qin LUO ; Rui-yun PENG ; Ya-bing GAO ; Li ZHAO ; Li-feng WANG
Chinese journal of integrative medicine 2016;22(2):110-115
OBJECTIVETo investigate the effects of Heijiangdan Ointment ( HJD) on oxidative stress in (60)Co γ-ray radiation-induced dermatitis in mice.
METHODSFemale Wistar mice with grade 4 radiation dermatitis induced by (60)Co γ-rays were randomly divided into four groups (n=12 per group); the HJD-treated, recombinant human epidermal growth factor (rhEGF)-treated, Trolox-treated, and untreated groups, along with a negative control group. On the 11th and 21st days after treatment, 6 mice in each group were chosen for evaluation. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), and lactate dehydrogenase (LDH) were detected using spectrophotometric methods. The fibroblast mitochondria were observed by transmission electron microscopy (TEM). The expressions of fibroblast growth factor 2 (FGF-2) and transforming growth factor β1 (TGF-β1) were analyzed by western blot.
RESULTSCompared with the untreated group, the levels of SOD, MDA and LDH, on the 11th and 21st days after treatment showed significant difference (P<0.05). TEM analysis indicated that fibroblast mitochondria in the untreated group exhibited swelling and the cristae appeared fractured, while in the HJD group, the swelling of mitochondria was limited and the rough endoplasmic reticulum appeared more relaxed. The expressions of FGF-2 and TGF-β1 increased in the untreated group compared with the negative control group (P<0.05). After treatment, the expression of FGF-2, rhEGF and Trolox in the HJD group were significantly increased compared with the untreated group (P<0.05), or compared with the negative control group (P<0.05). The expression of TGF-β1 showed significant difference between untreated and negative control groups (P<0.05). HJD and Trolox increased the level of TGF-β1 and the difference was marked as compared with the untreated and negative control groups (P<0.05).
CONCLUSIONHJD relieves oxidative stress-induced injury, increases the antioxidant activity, mitigates the fibroblast mitochondrial damage, up-regulates the expression of growth factor, and promotes mitochondrial repair in mice.
Animals ; Biological Products ; pharmacology ; therapeutic use ; Cell Proliferation ; drug effects ; radiation effects ; Cobalt Radioisotopes ; Dermatitis ; complications ; drug therapy ; pathology ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Female ; Fibroblast Growth Factor 2 ; genetics ; metabolism ; Fibroblasts ; drug effects ; pathology ; radiation effects ; Gamma Rays ; Humans ; L-Lactate Dehydrogenase ; metabolism ; Malondialdehyde ; metabolism ; Mice ; Mitochondria ; drug effects ; metabolism ; radiation effects ; Ointments ; Oxidative Stress ; drug effects ; radiation effects ; Pharmaceutical Preparations ; Radiation Injuries ; complications ; drug therapy ; pathology ; Superoxide Dismutase ; metabolism ; Transforming Growth Factor beta1 ; genetics ; metabolism ; Up-Regulation ; drug effects ; radiation effects
4.Tongxinluo inhibits cyclooxygenase-2, inducible nitric oxide synthase, hypoxia-inducible factor-2α/vascular endothelial growth factor to antagonize injury in hypoxia-stimulated cardiac microvascular endothelial cells.
Yan-Ning LI ; Xiu-Juan WANG ; Bin LI ; Kun LIU ; Jin-Sheng QI ; Bing-Hui LIU ; Ye TIAN
Chinese Medical Journal 2015;128(8):1114-1120
BACKGROUNDEndothelial dysfunction is considered as the initiating process and pathological basis of cardiovascular disease. Cyclooxygenase-2 (COX-2) and prostacyclin synthase (PGIS), inducible nitric oxide synthase (iNOS) and endothelial NOS (eNOS) are key enzymes with opposing actions in inflammation and oxidative stress, which are believed to be the major driver of endothelial dysfunction. And in hypoxia (Hx), Hx-inducible factor (HIF)-1α and HIF-2α are predominantly induced to activate vascular endothelial growth factor (VEGF), resulting in abnormal proliferation. Whether and how Tongxinluo (TXL) modulates COX-2, PGIS, iNOS, eNOS, HIF-1α, HIF-2α, and VEGF in Hx-stimulated human cardiac microvascular endothelial cells (HCMECs) have not been clarified.
METHODSHCMEC were treated with CoCl 2 to mimic Hx and the mRNA expressions of COX-2, PGIS, iNOS, eNOS, HIF-1α, HIF-2α, and VEGF were first confirmed, and then their mRNA expression and protein content as well as the cell pathological alterations were evaluated for TXL treatment with different concentrations. In addition, the effector molecular of inflammation prostaglandin E 2 (PGE 2 ) and the oxidative marker nitrotyrosine (NT) was adopted to reflect HCMEC injury.
RESULTSHx could induce time-dependent increase of COX-2, iNOS, HIF-2α, and VEGF in HCMEC. Based on the Hx-induced increase, TXL could mainly decrease COX-2, iNOS, HIF-2α, and VEGF in a concentration-dependent manner, with limited effect on the increase of PGIS and eNOS. Their protein contents verified the mRNA expression changes, which was consistent with the cell morphological alterations. Furthermore, high dose TXL could inhibit the Hx-induced increase of PGE 2 and NT contents, attenuating the inflammatory and oxidative injury.
CONCLUSIONSTXL could inhibit inflammation-related COX-2, oxidative stress-related iNOS, and HIF-2α/VEGF to antagonize Hx-induced HCMEC injury.
Blotting, Western ; Cell Hypoxia ; drug effects ; Cell Line ; Cobalt ; pharmacology ; Drugs, Chinese Herbal ; pharmacology ; Enzyme-Linked Immunosorbent Assay ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit ; genetics ; metabolism ; Nitric Oxide Synthase Type II ; genetics ; metabolism ; Vascular Endothelial Growth Factor A ; genetics ; metabolism
5.Protective effect of grape seed proanthocyanidin on cultured RGC-5 cells against CoCl2-induced hypoxic injury.
Ka-Na LIN ; Mei-Li LIN ; Er-Qing WEI
Journal of Zhejiang University. Medical sciences 2015;44(1):24-29
OBJECTIVETo investigate the protective effects of grape seed proanthocyanidin extracts (GSPE) against CoCl2-induced hypoxic injury in cultured RGC-5 cells.
METHODSCoCl2(400 μmol/L) was used to induce hypoxic injury in cultured RGC-5 cells; the cells were pretreated with 0,100,200,400 and 800μmol/L GSPE for 24h. The cell viability was assayed by MTT; the apoptosis was detected by Hoechst 33342 staining; the intracellular reactive oxygen species (ROS) was measured by H2DCFDA oxidative reaction. The mRNA expression of Bcl-2, caspase 9 and caspase 3 was determined by real-time PCR.
RESULTSCompared to hypoxic control group, pretreatment with GSPE significantly increased viability of RGC-5 cells (P<0.001), reduced cell apoptosis (P<0 .001) and intracellular ROS(P <0 .001). In addition, GSPE significantly increased the mRNA expression of Bcl-2(P<0 .001) and decreased mRNA expression of caspase 9(P<0 .001) and caspase 3(P<0 .001) compared to hypoxic control group.
CONCLUSIONGSPE may have a protective effect against CoCl2-induced hypoxic injury in cultured RGC-5 cells. The decrease of intercellular ROS, up-regulation of Bcl-2 and down-regulation of caspase 9 and caspase 3 may be involved in the mechanism of the protective effect of GSPE.
Animals ; Apoptosis ; Caspase 3 ; metabolism ; Caspase 9 ; metabolism ; Cell Hypoxia ; drug effects ; Cell Line ; drug effects ; Cell Survival ; Cobalt ; Down-Regulation ; Grape Seed Extract ; pharmacology ; Proanthocyanidins ; pharmacology ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; Reactive Oxygen Species ; metabolism ; Up-Regulation
6.Study on efficacy of liujunzi decoction combined with zuojin pills in treating acute radioactive duodenitis and their mechanism.
Xiao CHEN ; Zhi-Qing WAN ; Gen-Cheng HAN ; Ji-Dong WANG ; Zhi ZHAO ; Ping ZHOU
China Journal of Chinese Materia Medica 2014;39(2):278-284
OBJECTIVETo evaluate the therapeutic effect of Liujunzi decoction combined with Zuojin pills in treating the radioactive duodenitis and their mechanism, and compare with clinical routine acid suppressants combined with mucous membrane protective preparations to study the mechanism of their efficacy.
METHODAccording to the study of Williams J P and characteristics of duodenitis, and by reference to the radiation enteritis modeling standard, we took the lead in establishing the mouse radioactive duodenal injury model. The model mice were randomly divided into the control group (n = 26), traditional Chinese medicine (TCM) group (n = 16) and the western medicine (oral administration with famotidine 0.5 mL + almagate suspension 0.3 mL per mouse, once a day) group (n = 16). After the standard administrating, such objective indexes as general condition, weight, changes in health score, pathology and expression of inflammatory factors were observed to evaluate the efficacy.
RESULTThe radioactive duodenitis model of mice was successfully established with 12 Gy. Mice in the control group suffered from weight loss, anorexia, low fluid intake, loose stools, and occasionally mucous bloody stool, poor spirit, dim fur, lack of exercise and arch back. Mice in drug intervention groups were generally better than those in the pure irradiation group. The IL-6, IL-1beta, TNF-alpha mRNA expressions in spleen and mesenteric lymph node tissues in TCM and western medicine groups showed a declining trend compared with the control group. Their concentrations in peripheral blood serum also slightly changed. The TCM group revealed notable advantage in reducing inflammatory factors. The microscopic observation showed that a better mucosa repair in intervention groups than the pure irradiation group. The improved Chiu's scoring method showed a statistical significance in the difference between TCM and western medicine groups (P < 0.05).
CONCLUSIONLiujunzi decoction combined with Zuojin pills could treat acute radiation enteritis, regulate organic immunity, and inhibit acute injury, promote local tissue repair, with the potential to resist such adverse effects as radiation intestinal fibrosis. The regulation of inflammatory factor release is one of efficacy generation mechanisms.
Animals ; Cobalt Radioisotopes ; adverse effects ; Drug Interactions ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Duodenitis ; blood ; drug therapy ; Interleukin-1beta ; blood ; Interleukin-6 ; blood ; Mice ; Mice, Inbred BALB C ; Mucous Membrane ; drug effects ; radiation effects ; Radiation Injuries, Experimental ; blood ; drug therapy ; Tumor Necrosis Factor-alpha ; blood
7.Synthesis and protective effect of ligustrazine intermediates against CoCl2-induced neurotoxicity in differentiated PC12 cell.
Guo-Liang LI ; Peng-Long WANG ; Xin XU ; Jin-Xuan LIN ; Fu-Hao CHU ; Ji-Xiang SONG ; Shen ZHOU ; Mi-Na WANG ; Yu-Zhong ZHANG ; Hai-Min LEI
China Journal of Chinese Materia Medica 2014;39(14):2679-2683
Ligustrazine, one of the major effective components of the Chinese traditional medicinal herb Ligusticum Chuanxiong Hort, has been reported plenty of biological activities, such as protect cardiovascular and cerebrovascular, neuroprotection and anti-tumor, et al. Because of its remarkable effects, studies on structural modification of ligustrazine have attracted much attention. Ligustrazine synthetic derivatives reported in recent decades are mainly derived from four primary intermediates (TMP-COOH, TMP-OH, TMP-NH2, HO-TMP-OH). To explore the neuroprotection activitiy of ligustrazine intermediates, six ligustrazine intermediates (2, 5, 8, 11, 12, 13) were synthesized and their protective effects against CoCl2-induced neurotoxicity in differentiated PC12 cells were studied. The target compounds were prepared via different chemical methods, including oxidation, substitution, esterification and amidation without changing the structure nucleus of ligustrazine. Compared with TMP (EC50 = 56.03 micromol x L(-1)), four compounds (2, 5, 12 and 13) exhibited higher activity (EC50 < 50 micromol x L(-1)) respectively, of which, compound 2 displayed the highest protective effect against the damaged PC12 cells (EC50 = 32.86 micromol x L(-1)), but target compounds 8 and 11 appeared lower activity (EC50 > 70 micromol x L(-1)). By structure-activity relationships analysis, the introduction of carboxyl, amino to the side chain of ligustrazine and appropriately increase the proportion of ligustrazine may contribute to enhance its neuroprotective activity, which provides a reference for the design, synthesis and activity screening of relevant series of ligustrazine derivatives in the future.
Animals
;
Cell Differentiation
;
drug effects
;
Chemistry Techniques, Synthetic
;
Cobalt
;
toxicity
;
Drugs, Chinese Herbal
;
chemistry
;
Neuroprotective Agents
;
chemical synthesis
;
chemistry
;
pharmacology
;
Neurotoxins
;
toxicity
;
PC12 Cells
;
Pyrazines
;
chemical synthesis
;
chemistry
;
pharmacology
;
Rats
8.Cobalt Chloride Attenuates Oxidative Stress and Inflammation through NF-kappaB Inhibition in Human Renal Proximal Tubular Epithelial Cells.
Se Won OH ; Yun Mi LEE ; Sejoong KIM ; Ho Jun CHIN ; Dong Wan CHAE ; Ki Young NA
Journal of Korean Medical Science 2014;29(Suppl 2):S139-S145
We evaluated the effect of cobalt chloride (CoCl2) on TNF-alpha and IFN-gamma-induced-inflammation and reactive oxygen species (ROS) in renal tubular epithelial cells (HK-2 cells). We treated HK-2 cells with CoCl2 before the administration of TNF-alpha/IFN-gamma. To regulate hemeoxygenase-1 (HO-1) expression, the cells were treated CoCl2 or HO-1 siRNA. CoCl2 reduced the generation of ROS induced by TNF-alpha/IFN-gamma. TNF-alpha/IFN-gamma-treated-cells showed an increase in the nuclear translocation of phosphorylated NF-kappaBp65 protein, the DNA-binding activity of NF-kappaBp50 and NF-kappaB transcriptional activity and a decrease in IkappaBalpha protein expression. These changes were restored by CoCl2. We noted an intense increase in monocyte chemoattractant protein-1 (MCP-1) and regulated on activation normal T cell expressed and secreted (RANTES) production in TNF-alpha/IFN-gamma-treated cells. We demonstrated that this effect was mediated through NF-kappaB signaling because an NF-kappaB inhibitor significantly reduced MCP-1 and RANTES production. CoCl2 effectively reduced MCP-1 and RANTES production. The expression of HO-1 was increased by CoCl2 and decreased by HO-1 siRNA. However, knockdown of HO-1 by RNA interference did not affect MCP-1 or RANTES production. We suggest that CoCl2 has a protective effect on TNF-alpha/IFN-gamma-induced inflammation through the inhibition of NF-kappaB and ROS in HK-2 cells. However, CoCl2 appears to act in an HO-1-independent manner.
Cell Line
;
Chemokine CCL2/metabolism
;
Chemokine CCL5/metabolism
;
Cobalt/*pharmacology
;
Epithelial Cells/cytology/metabolism
;
Heme Oxygenase-1/antagonists & inhibitors/genetics/metabolism
;
Humans
;
*Inflammation
;
Interferon-gamma/pharmacology
;
Kidney Tubules, Proximal/cytology
;
NF-kappa B/antagonists & inhibitors/genetics/*metabolism
;
NF-kappa B p50 Subunit/genetics/metabolism
;
Oxidative Stress/*drug effects
;
Phosphorylation
;
Protein Binding
;
RNA Interference
;
RNA, Small Interfering/metabolism
;
Transcription Factor RelA/metabolism
;
Tumor Necrosis Factor-alpha/pharmacology
9.Synthesis and anti-tumor activity of baicalin-metal complex.
Ming GUO ; Zhou-Ling WU ; Chun-Ge WANG ; Xiao-Yan GAO
Acta Pharmaceutica Sinica 2014;49(3):337-345
Chelating ligand method has been used to synthesize baicalin-metal (Ni2+, Co2+, Cu2+) complexes (BMC). The composition and structure of BMC were characterized by the element analysis, ultraviolet spectrum (UV), infrared spectrum (IR), mass (MS) and thermal gravitational analysis (TGA). MTT was used to analyze the effects of BMC on SMMC-7721 cell proliferation. PI staining method and Annexin-V/FITC double staining method were used to analyze the effects of BMC on the cell cycle and apoptosis of SMMC-7721 cell. Fluorescence quantitative RT-PCR was used to analyze the expression of BMC on Bcl-2 gene and Bax mRNA, flow cytometry was used to analyze BMC on the expression of Bcl-2 protein and Bax protein. The antineoplastic activity and mechanism of action of BMC was explored comprehensively. The results showed that three new kinds of BMC (molar ratio of 2 : 1) were successfully prepared, the complexes molecular formula are: Na2Ni(C21H16O11)2 x 10H2O, Na2Co(C21H16O11)2 x 8H2O and Na2Cu(C21H16O11)2 x 8H2O. According to the results of cell cycle and apoptosis detection, BMC stopped cells at G0/G1 phase to S phase and G2/M phase. Gene and protein detection showed that under the given concentration and time, BMC can downregulate the expression of Bcl-2 gene in SMMC-7721 cells, and significantly decrease the expression of Bcl-2 protein, at the same time, with the increase of expression of Bax gene, the Bax protein's expression increased significantly. Which indicates that BMC restrain cell proliferation and cell apoptosis by stopping cell cycle, reducing the expression of Bcl-2 and increasing that of Bax; The anti-tumor activities of three kinds of complexes were: baicalin-copper (BC-Cu) > baicalin-cobalt (BC-Co) > baicalin-nickel (BC-Ni) > baicalin (BC), showing the dose-response relationship.
Antineoplastic Agents
;
administration & dosage
;
pharmacology
;
Apoptosis
;
drug effects
;
Cell Cycle
;
drug effects
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Cobalt
;
Copper
;
Drug Delivery Systems
;
Flavonoids
;
administration & dosage
;
pharmacology
;
Humans
;
Liver Neoplasms
;
metabolism
;
pathology
;
Metals
;
Nickel
;
Proto-Oncogene Proteins c-bcl-2
;
genetics
;
metabolism
;
RNA, Messenger
;
metabolism
;
bcl-2-Associated X Protein
;
genetics
;
metabolism
10.Expression of integrin-linked kinase in fibroblasts of scar induced by cobalt chloride and its effect on cell proliferation.
Ye-yang LI ; Gang LI ; Lan MI ; Wei-hua LIN ; Jing-en SUN ; Jin-lun WANG ; Zhen-wen LIANG ; Xiao-hong WANG
Chinese Journal of Burns 2013;29(3):300-303
OBJECTIVETo explore the expression of integrin-linked kinase (ILK) in fibroblasts (Fbs) of scar induced by cobalt chloride (CoCl2) and its effect on cell proliferation.
METHODSThe human hypertrophic scar Fbs of seven patients were isolated and cultured in vitro. Cells from the 5th to the 6th passages were used in the experiment. Six bottles of Fbs were obtained from each of the seven patients, and they were respectively cultured with DMEM nutrient solution containing CoCl2 in the concentration of 0, 50, 100, 150, 200, and 250 µmol/L for 24 h. The expression of ILK mRNA was determined with real-time fluorescence quantitative PCR. Fbs were stimulated by CoCl2 in the most suitable concentration (100 µmol/L) and the protein expression of ILK was determined 0, 1, 2, 4, 12, and 24 h after the stimulation. Then the Fbs were divided into control group (cultured with nutrient solution), negative control group (transfected with con-siRNA), and ILK siRNA group (transfected with ILK siRNA). They were cultured with nutrient solution containing CoCl2 in different concentrations 24 h after transfection, with 4 wells for each concentration in each group. The cell proliferation was detected by XTT assay. Data were processed with one-way analysis of variance (ANOVA) and ANOVA for repeated measurement, and LSD method was used in multiple comparisons.
RESULTSThe expression level of ILK mRNA was highest in Fbs cultured with 100 µmol/L CoCl2 for 24 h, with significant difference compared with those of Fbs cultured with other concentrations of CoCl2 (F = 50.958, P < 0.001). The expression of ILK protein in Fbs cultured with 100 µmol/L CoCl2 for 1 h (0.243 ± 0.009) was lower than that cultured for 0 h (0.387 ± 0.017), and it started to increase from 2 h (0.361 ± 0.010), and exaggerated at 4 h (0.584 ± 0.028), 12 h (0.730 ± 0.029), and 24 h (0.785 ± 0.031). The expression levels of ILK protein at 1, 4, 12, 24 h were statistically different from that at 0 h (P values all below 0.05). XTT showed that cell proliferation level was highest in control group when cultured with 100 µmol/L CoCl2 (F = 488.026, P < 0.001), which decreased from 150 µmol/L. The cell proliferation level in control group cultured with 250 µmol/L CoCl2 was significantly lower than that with 0 µmol/L (P values all below 0.05). There was no significant change in cell proliferation in ILK siRNA group among different concentrations of CoCl2 (F = 2.542, P = 0.056). The cell proliferation level in ILK siRNA group was significantly lower than that in control group and negative control group (F = 2519.542, P < 0.001).
CONCLUSIONSILK may be a key protein in response of hypoxia in Fbs. The mild hypoxia can stimulate the expression of ILK and promote the proliferation of Fbs, while severe hypoxia can reduce the expression of ILK and inhibit cell proliferation.
Cell Proliferation ; drug effects ; Cells, Cultured ; Cicatrix ; metabolism ; pathology ; Cobalt ; pharmacology ; Fibroblasts ; drug effects ; metabolism ; pathology ; Humans ; Protein-Serine-Threonine Kinases ; metabolism

Result Analysis
Print
Save
E-mail