1.Next-generation sequencing enables the discovery of more diverse positive clones from a phage-displayed antibody library.
Wonjun YANG ; Aerin YOON ; Sanghoon LEE ; Soohyun KIM ; Jungwon HAN ; Junho CHUNG
Experimental & Molecular Medicine 2017;49(3):e308-
Phage display technology provides a powerful tool to screen a library for a binding molecule via an enrichment process. It has been adopted as a critical technology in the development of therapeutic antibodies. However, a major drawback of phage display technology is that because the degree of the enrichment cannot be controlled during the bio-panning process, it frequently results in a limited number of clones. In this study, we applied next-generation sequencing (NGS) to screen clones from a library and determine whether a greater number of clones can be identified using NGS than using conventional methods. Three chicken immune single-chain variable fragment (scFv) libraries were subjected to bio-panning on prostate-specific antigen (PSA). Phagemid DNA prepared from the original libraries as well as from the Escherichia coli pool after each round of bio-panning was analyzed using NGS, and the heavy chain complementarity-determining region 3 (HCDR3) sequences of the scFv clones were determined. Subsequently, through two-step linker PCR and cloning, the entire scFv gene was retrieved and analyzed for its reactivity to PSA in a phage enzyme immunoassay. After four rounds of bio-panning, the conventional colony screening method was performed for comparison. The scFv clones retrieved from NGS analysis included all clones identified by the conventional colony screening method as well as many additional clones. The enrichment of the HCDR3 sequence throughout the bio-panning process was a positive predictive factor for the selection of PSA-reactive scFv clones.
Antibodies
;
Bacteriophages
;
Chickens
;
Clone Cells*
;
Cloning, Organism
;
Complementarity Determining Regions
;
DNA
;
Escherichia coli
;
Immunoenzyme Techniques
;
Mass Screening
;
Methods
;
Polymerase Chain Reaction
;
Prostate-Specific Antigen
;
Single-Chain Antibodies
2.Reproductive ability of a cloned male detector dog and behavioral traits of its offspring.
Ji Hyun LEE ; Geon A KIM ; Rak Seung KIM ; Jong Su LEE ; Hyun Ju OH ; Min Jung KIM ; Do Kyo HONG ; Byeong Chun LEE
Journal of Veterinary Science 2016;17(3):407-411
In 2007, seven detector dogs were produced by somatic cell nuclear transfer using one nuclear donor dog, then trained and certified as excellent detector dogs, similar to their donor. In 2011, we crossed a cloned male and normal female by natural breeding and produced ten offspring. In this study, we investigated the puppies' temperaments, which we later compared with those of the cloned parent male. The results show that the cloned male had normal reproductive abilities and produced healthy offspring. All puppies completed narcotic detector dog training with a success rate for selection of 60%. Although the litter of cloned males was small in this study, a cloned male dog bred by natural mating produced puppies that later successfully completed the training course for drug detection. In conclusion, cloning an elite dog with superior genetic factors and breeding of the cloned dog was found to be a useful method to efficiently procure detector dogs.
Animals
;
Breeding
;
Clone Cells*
;
Cloning, Organism
;
Dogs*
;
Female
;
Humans
;
Male*
;
Methods
;
Parents
;
Temperament
;
Tissue Donors
3.Construction of a New T-Vector: Nickase (Nt.BspQI)-Generated T-Vector Bearing a Reddish-Orange Indicator Gene.
Ji Young CHOI ; Chulman JO ; Sangmee Ahn JO
Tissue Engineering and Regenerative Medicine 2016;13(1):66-69
T-vectors are widely used for cloning the polymerase chain reaction (PCR) products. However, the low conversion efficiency of a plasmid into the linear T-vector usually results in non-recombinants. Here, we designed a new plasmid pNBQ-T to easily select the recombinant colonies harboring PCR products. pNBQ-T plasmid, which contains a DsRed indicator gene between two Nt.BspQI restriction cassettes, each of which contains palindromic sequences susceptible to Nt.BspQI nickase (5′-GCTCTTCT^GAAGAGC-3′) at each end. Thus, this plasmid can be easily converted into T-vectors by a nickase (quadruple nicking), which results in two double strand breaks with 3′-thymidine overhangs. DsRed indicator gene, which is inserted between the restriction sites, helps identifying the PCR recombinants. Using this pNBQ-T plasmid the insertion efficiency of a PCR product was examined. We successfully identified white colony of the recombinants with the inserted myostatin promoter gene: the cloning efficiency was 93%. Therefore, this simple method utilizing pNBQ-T plasmid will serve as a useful and efficient technique for preparation of home-made T-vectors.
Clone Cells
;
Cloning, Organism
;
Deoxyribonuclease I*
;
Methods
;
Myostatin
;
Plasmids
;
Polymerase Chain Reaction
4.Targeted exogenous EGFP gene editing in caprine fetus fibroblasts by zinc-finger nucleases.
Yuguo YUAN ; Baoli YU ; Shaozheng SONG ; Feng ZHOU ; Liqing ZHANG ; Yingying GU ; Minghui YU ; Yong CHENG
Chinese Journal of Biotechnology 2013;29(11):1573-1580
Gene knockout by ZFNs (zinc-finger nucleases) is efficient and specific, and successfully applied in more than 10 organisms. Currently, it is unclear whether this technology can be used for knocking-out enhanced green fluorescent protein (EGFP) gene in transgenic goats. Here we constructed and used ZFN-coding plasmids to produce genetic knockouts in the cells of cloned fetus produced from donor cells by microinjection of EGFP gene. Following introduced plasmids into caprine primary cultured fetus fibroblasts by electroporation, targeting of a transgene resulted in sequence mutation. Using the flow cytometric analysis, we confirmed the disappearance of EGFP expression in treated cells. Sequence from PCR products corresponding to targeted site showed that insertion of a G into the exon of EGFP resulted in frame shift mutation. These results suggest that ZFN-mediated gene targeting can apply to caprine fetus fibroblasts, which may open a unique avenue toward the creation of gene knockout goats combining with somatic cell nuclear transfer.
Animals
;
Base Sequence
;
Cloning, Organism
;
Electrophoresis
;
Endonucleases
;
genetics
;
metabolism
;
Fetus
;
Fibroblasts
;
metabolism
;
Gene Knockout Techniques
;
Gene Targeting
;
methods
;
Goats
;
Green Fluorescent Proteins
;
genetics
;
Molecular Sequence Data
;
Mutation
;
Zinc Fingers
5.Deletion of marker gene in transgenic goat by Cre/LoxP system.
Chong LAN ; Lina REN ; Min WU ; Siguo LIU ; Guohui LIU ; Xujun XU ; Jianquan CHEN ; Hengdong MA ; Guoxiang CHENG
Chinese Journal of Biotechnology 2013;29(12):1847-1854
In producing transgenic livestock, selectable marker genes (SMGs) are usually used to screen transgenic cells from numerous normal cells. That results in SMGs integrating into the genome and transmitting to offspring. In fact, SMGs could dramatically affect gene regulation at integration sites and also make the safety evaluation of transgenic animals complicated. In order to determine the deletion time and methods in the process of producing transgenic goats, the feasibility of deleting SMGs was explored by Cre/LoxP before or after somatic cell cloning. In addition, we compared the efficiency of protein transduction with plasmids co-transduction. We could delete 43.9% SMGs after screening out the transgenic cell clones, but these cells could not be applied to somatic cells cloning because of serious aging after two gene modifications. The SMG-free cells suitable for nuclear transfer were accessible by using the cells of transgenic goats, but this approach was more time consuming. Finally, we found that the Cre plasmid could delete SMGs with an efficiency of 7.81%, but about 30% in SMG-free cells had sequences of Cre plasmid. Compared with Cre plasmid, the integration of new exogenous gene could be avoided by TAT-CRE protein transduction, and the deletion rate of TAT-CRE transduction was between 43.9 and 72.8%. Therefore, TAT-Cre transduction could be an effective method for deleting selectable marker genes.
Animals
;
Animals, Genetically Modified
;
genetics
;
Cloning, Organism
;
veterinary
;
Gene Knockout Techniques
;
Gene Targeting
;
methods
;
Genes, Reporter
;
Genetic Engineering
;
Genetic Vectors
;
genetics
;
Goats
;
genetics
;
Integrases
;
chemistry
;
metabolism
;
Recombination, Genetic
;
Transgenes
;
genetics
6.Cloning goat producing human lactoferrin with genetically modified donor cells selected by single or dual markers.
Liyou AN ; Yuguo YUAN ; Baoli YU ; Tingjia YANG ; Yong CHENG
Chinese Journal of Biotechnology 2012;28(12):1482-1491
We compared the efficiency of cloning goat using human lactoferrin (hLF) with genetically modified donor cells marked by single (Neo(r)) or double (Neo(r)/GFP) markers. Single marker expression vector (pBLC14) or dual markers expression vector (pAPLM) was delivered to goat fetal fibroblasts (GFF), and then the transgenic GFF was used as donor cells to produce transgenic goats. Respectively, 58.8% (20/34) and 86.7% (26/30) resistant cell lines confirmed the transgenic integration by PCR. Moreover, pAPLM cells lines were subcultured with several passages, only 20% (6/30) cell lines was observed fluorescence from each cell during the cell passage. Somatic cell nuclear transfer using the donor cells harbouring pBLC14 or pAPLM construct, resulting in a total of 806 reconstructed embryos, a pregnancy rate at 35 d (53.8%, 39.1%) and 60 d (26.9%, 21.7%), and an offspring birth rate (1.9%, 1.4%) with 5 and 7 newborn cloned goats, respectively. Transgene was confirmed by PCR and southern-blot in all cloned offspring. There were no significant differences at the reconstructed embryo fusion rates, pregnancy rates and the birth rate (P > 0.05) between single and double markers groups. The Neo(r)/GFP double markers could improve the reliability for accurately and efficiently selecting the genetically modified donor cells. No adverse effect was observed on the efficiency of transgenic goat production by SCNT using somatic cells transfected with double (Neo(r)/GFP) markers vector.
Animals
;
Animals, Genetically Modified
;
genetics
;
Cloning, Molecular
;
Cloning, Organism
;
methods
;
veterinary
;
Fetus
;
Fibroblasts
;
cytology
;
Genetic Markers
;
Goats
;
embryology
;
genetics
;
Green Fluorescent Proteins
;
genetics
;
Humans
;
Lactoferrin
;
biosynthesis
;
genetics
;
Neomycin
;
Nuclear Transfer Techniques
;
veterinary
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
Transfection
;
veterinary
7.Cloned calves derived from somatic cell nuclear transfer embryos cultured in chemically defined medium or modified synthetic oviduct fluid.
Goo JANG ; So Gun HONG ; Byeong Chun LEE
Journal of Veterinary Science 2011;12(1):83-89
Somatic cell nuclear transfer (SCNT) is considered to be a critical tool for propagating valuable animals. To determine the productivity calves resulting from embryos derived with different culture media, enucleated oocytes matured in vitro were reconstructed with fetal fibroblasts, fused, and activated. The cloned embryos were cultured in modified synthetic oviduct fluid (mSOF) or a chemically defined medium (CDM) and developmental competence was monitored. After 7 days of culturing, the blastocysts were transferred into the uterine horn of estrus-synchronized recipients. SCNT embryos that were cultured in mSOF or CDM developed to the blastocysts stages at similar rates (26.6% vs. 22.5%, respectively). A total of 67 preimplantational stage embryos were transferred into 34 recipients and six cloned calves were born by caesarean section, or assisted or natural delivery. Survival of transferred blastocysts to live cloned calves in the mSOF and the CDM was 18.5% (to recipients), 9.6% (to blastocysts) and 42.9% (to recipients), 20.0% (to blastocysts), respectively. DNA analysis showed that all cloned calves were genetically identical to the donor cells. These results demonstrate that SCNT embryos cultured in CDM showed higher viability as judged by survival of the calves that came to term compared to blastocysts derived from mSOF cultures.
Animals
;
Blastocyst/physiology
;
*Cattle
;
Cloning, Organism/methods/*veterinary
;
Culture Media/chemistry
;
Embryo Culture Techniques
;
Embryo Transfer
;
Embryonic Development
;
Female
;
Fertilization in Vitro/*veterinary
;
Nuclear Transfer Techniques/*veterinary
;
Pregnancy
8.Post-mortem re-cloning of a transgenic red fluorescent protein dog.
So Gun HONG ; Ok Jae KOO ; Hyun Ju OH ; Jung Eun PARK ; Minjung KIM ; Geon A KIM ; Eun Jung PARK ; Goo JANG ; Byeong Chun LEE
Journal of Veterinary Science 2011;12(4):405-407
Recently, the world's first transgenic dogs were produced by somatic cell nuclear transfer. However, cellular senescence is a major limiting factor for producing more advanced transgenic dogs. To overcome this obstacle, we rejuvenated transgenic cells using a re-cloning technique. Fibroblasts from post-mortem red fluorescent protein (RFP) dog were reconstructed with in vivo matured oocytes and transferred into 10 surrogate dogs. One puppy was produced and confirmed as a re-cloned dog. Although the puppy was lost during birth, we successfully established a rejuvenated fibroblast cell line from this animal. The cell line was found to stably express RFP and is ready for additional genetic modification.
Animals
;
Animals, Genetically Modified
;
Cloning, Organism/methods/*veterinary
;
Dogs/*genetics
;
Female
;
Gastrointestinal Tract/metabolism
;
Gene Expression Regulation
;
Kidney/metabolism
;
Liver/metabolism
;
Luminescent Proteins/*genetics/metabolism
;
Lung/metabolism
;
Male
;
Myocardium/metabolism
;
Nuclear Transfer Techniques/veterinary
;
Spleen/metabolism
;
Trachea/metabolism
9.From human genome to man-made life: J. Craig Venter leads the life sciences.
Mingwei SUN ; Yin LI ; George F GAO
Chinese Journal of Biotechnology 2010;26(6):697-706
For the first time ever, the scientists of J. Craig Venter team have created actual self-replicating synthetic life. The research was just published in the Journal of Science on May 20, 2010. Although this news immediately brings the worry about the possible potential threat to biosecurity and biosafety as well as the ethical disputes, it yet indicates that mankind have made a new step forward in synthetic biology. In the time of post-genome era, we believe the advancement of synthetic biology that might affect or change the future life of human being will be widely used in energy, environment, materials, medication and many other fields.
Biological Science Disciplines
;
methods
;
Cloning, Organism
;
Genome, Human
;
genetics
;
Human Genome Project
;
Humans
;
Synthetic Biology
;
trends
10.Effect of the chemically assisted enucleation on the enucleation of sheep oocytes and the development of their reconstructed embryos.
Xiaoyan PAN ; Zhengchao WANG ; Zhixin LI ; Yuji JIN ; Zhaohua DOU ; Zhiqin GUO ; Feng WANG
Chinese Journal of Biotechnology 2009;25(4):503-508
In order to enhance the efficiency of sheep somatic cell nuclear transfer, we used a chemically assisted enucleation with colchicine to study the effects of the concentration of colchicine, the incubation time of oocytes in colchicine and the maturation time of oocytes on the enucleation rates and the development of reconstructed embryos. The results showed that 1) there were no significant differences in the rates of cytoplast protrusion and enucleation between oocytes that were incubated in colchicine (0.4 microg/mL) for 0.5 h and oocytes that were incubated in colchicine (0.4 microg/mL) for 1 h, and the rate of cytoplast protrusion can be 85.4% while the rate of cytoplast enucleation is 100%. 2) There was no significant difference in oocyte enucleation between oocytes treated with medium containing 0.2 microg/mL colchicine for 0.5 h and oocytes treated with medium containing 0.4 microg/mL colchicine for 0.5 h. 3) A maturation time of 18-23 h did not affect the rates of cytoplast protrusion and enucleation by chemically assisted enucleation, whereas the rate of enucleation of oocytes by blind enucleation was found to decrease with a prolonged incubation time. 4) The development rates of reconstructed embryos could not be influenced by these two enucleation methods, increased from oocytes matured for 21-23 h. These results demonstrate that sheep oocytes can be enucleated fast and effectively by optimized colcholine chemically assisted enucleation, which can enhance the enucleation rate of sheep oocytes and the early development of reconstructed embryos in vitro.
Animals
;
Cloning, Organism
;
methods
;
Colchicine
;
pharmacology
;
Embryo, Mammalian
;
embryology
;
Female
;
Nuclear Transfer Techniques
;
veterinary
;
Oocytes
;
cytology
;
drug effects
;
Sheep

Result Analysis
Print
Save
E-mail